大多数部件有多种失效模式,这些失效模式或重要或不重要,重要性取决于在特定的设计中怎样地使用它们。比如一个电阻在开路和短路失效时,失效模式包括了它的值从原始量的一半到两倍的变化。如果这个电阻用于一个模拟电路的一部分,监视一个特定电压或者电流的等级,这个漂移的失效模式会直接导致测量的明显错误,并且看上去是非常的危险。如果同样的电阻串联到一个晶体管的基极,驱动一个继电器的线圈。即使电阻值漂移超过这个相对宽的范围,产品也能连续工作,并且产生输出状态。FMEDA需要以持续改进和创新为动力,以提高产品的质量和可靠性为目标。山西FMEDA科学决策
灯灭了是功能丧失,只有一盏灯亮,有一盏灯不亮,那是部分功能,性能损失。灯点亮200小时后,亮度下降,那是功能退化,灯太亮,那是过度功能,超出预期。灯在点亮时发热,发热是不期望的要求,那是非预期的功能,安全气囊在20ms内点爆,那是功能延迟。机油泵的泄压阀的功能:当油压大于9Bar时,泄压至油压小于2Bar,泄压时间小于20ms。功能丧失,如:在油压大于9Bar时,无法泄压;部分功能,如:在油压大于9Bar时,泄压后的油压大于2Bar;功能退化,如:无(由于功能中没有涉及到可靠性的要求)。山西FMEDA科学决策FMEDA需要与其他安全管理方法和工具相结合,如HAZOP、LOPA、PHA等。
什么是DFMEA的失效?当输入、控制和干扰因子处于可允许的范围内,由于错误的功能设计,产生了错误的或出现了不期望的边界效应。系统和子系统失效模式是根据功能损失或劣化来描述的,可能的失效是从功能中推断出来的,不是头脑其风暴瞎整出来的,失效模式的短语是“名词”加“动词组合成的,机油泄漏。应用确切的指标、数据、事实来描述失效,失效的描述必须是清晰和可理解,不能写不符合、不OK、失效、中断等此类的描述,不足以帮助我们去找到失效原因。通常一个功能可以有多种失效。
冷焊:冷焊的表象是焊点发黑,焊膏未完全熔化。失效后果:产生开路和虚焊,可能导致少部分产品报废或全部产品返工,严重度评定为50现有故障检测方法:人工目视和x射线检测仪检测。失效原因为:回流焊接参数设置不当,温度过低,传送速度过快,频度为3,检测难度为5,其风险指数为750现行控制措施:按照焊膏资料或可行经验设置回流焊温度曲线。焊桥:焊桥经常出现在引脚较密的丁C上或间距较小的片状元件间,这种缺陷在检验标准中属于重大缺陷。焊桥会严重影响产品的电气性能,所以必须要加以根除。失效后果:焊桥会造成短路等后果,严重的会使系统或主机丧失主要功能,导致产品全部报废,用户不满意程度很高,严重度评定为s。现有故障检测方法:人工目视和x射线检测仪检测。FMEDA的分析需要考虑系统的故障模式和效应的统计方法,以便确定系统的可靠性水平。
具体而言,包括以下几个步骤:步骤1: 计算失效率,首先,需要根据系统硬件架构,罗列所有硬件单元,为了方便分析和计算,可以对硬件单元按照类型进行分组。然后,根据行业公认的标准(SN29500, IEC 62380),历史或测试数据,查询各硬件单元失效模式以及对应的失效率分布。此过程可以采用手动模式,或者采用利用相关软件,输入系统硬件单元,进行自动化查询及计算。步骤2: 识别故障模式,对步骤1中列出的硬件单元进行安全分析,根据故障分析流程图,确定其故障模式是否和功能安全相关以及故障的类型:如果和功能安全无关,则为安全无关的安全故障。如果和功能安全相关,则需要进一步分析,确定其故障的类型,包括单点故障或双点故障等(和功能安全相关的三点及以上的故障也属于安全故障),以及是否存在相应的安全机制。FMEDA需要与其他领域的知识和经验相结合,如电子、机械、化工、航空等领域的知识和经验。山西FMEDA科学决策
FMEDA可以应用于电子元器件、系统和软件等方面的可靠性分析。山西FMEDA科学决策
FMEDA是硬件架构度量的一种验证方法。FMEDA的目的是通过硬件架构度量参数来验证硬件架构中为了满足需求而采用的错误处理机制。为了处理硬件随机失效,采用两种硬件架构度量参数来验证架构的有效性。FMEDA是针对硬件随机失效的分析方法。对于电子-机械硬件元器件,只考虑电子方面的失效模式和失效率。硬件元器件的失效率可以通过以下几种方法决定:使用公认的工业数据库中的硬件元器件失效率,例如 SN29500。使用静态的市场返回品失效率或测试失效率。这种情况下,要求估计的失效率要有足够的置信度。山西FMEDA科学决策