目标跟踪(Target Tracking)是近年来计算机视觉领域比较活跃的研究方向之一,它包含从目标的图像序列中检测、分类、识别、跟踪并对其行为进行理解和描述,属于图像分析和理解的范畴。从技术角度而言,目标跟踪的研究内容相当丰富,主要涉及到模式识别、图像处理、计算机视觉、人工智能等学科知识;同时,动态场景中运动的快速分割、目标的非刚性运动、目标自遮挡和目标之间互遮挡的处理等问题也为目标跟踪研究带来了一定的挑战。由于目标跟踪在视频会议、安全监控、导弹制导、医疗诊断、高级人机交互及基于内容的图像存储与检索等方面具有广泛的应用前景和潜在的经济价值。国内有哪些厂家可以提供全国产化的图像识别模块?浙江耐用目标跟踪
之所以能产生这种可见运动或表观运动,是因为物体以不同的速度在不同的方向上移动,或者是因为相机在移动(或者两者都有)在很多应用程序中,跟踪表观运动都是极其重要的。它可用来追踪运动中的物体,以测定它们的速度、判断它们的目的地。对于手持摄像机拍摄的视频,可以用这种方法消除抖动或减小抖动幅度,使视频更加平稳。运动估值还可用于视频编码,用以压缩视频,便于传输和存储。被跟踪的运动可以是稀疏的(图像的少数位置上有运动,称为稀疏运动),也可以是稠密的(图像的每个像素都有运动,称为稠密运动)跟踪视频中的特征点从前面章节介绍的内容可以看出,根据特殊的点分析图像,可以使计算机视觉算法更加实高效。
视觉目标跟踪是指在视频图像序列的各帧图像中找到被跟踪的目标。基于区域的跟踪的基本思想是通过图像分割或预先人为确定,提取包含着运动目标的运动变化的区域范围作为匹配的目标模板,然后把目标模板与实时图像在所有可能位置上进行叠加,然后计算某种图像相似性度量的相应值,其比较大相似性相对应的位置就是目标的位置,Jorge等人提出的区域跟踪算法不仅利用了分割结果来给跟踪提供信息,同时也能利用跟踪所提供的信息改善分割效果,把连续帧的目标匹配起来跟踪目标。无人机吊舱能够通过定制算法和精细定位技术实现农药精细喷洒、农作物精细抛粮等操作。
序列图像的差异通常是运动目标检测和跟踪的出发点,认为目标的运动是图像差异的根本原因。但是,这是建立在背景本身不运动的前提下的。因此,在许多跟踪系统中,比如车载,由于车的振动导致传感器位置的变化,表现在图像上就是背景的运动,因此在做差图像和背景自动更新之前,都必须先经过配准,即让所有图像在都同一个坐标系之下,以消除背景的运动。在不同的应用场合,配准的方法多种多样,比如当两个图像之间只有平移变化时,计算出它们的平移量即可实现配准;由于平移变化对图像的相位信息影响较大,在频率域利用相位相关可以实现配准。图像识别跟踪可以在有些领域代替人员实现24小时不间断监测!浙江耐用目标跟踪
目标跟踪图像分析是人工智能的重要组成部分。浙江耐用目标跟踪
目标跟踪是计算机视觉研究领域的热点之一,并得到广泛应用。相机的跟踪对焦、无人机的自动目标跟踪等都需要用到了目标跟踪技术。另外还有特定物体的跟踪,比如人体跟踪,交通监控系统中的车辆跟踪,人脸跟踪和智能交互系统中的手势跟踪等。简单来说,目标跟踪就是在连续的视频序列中,建立所要跟踪物体的位置关系,得到物体完整的运动轨迹。给定图像首帧的目标坐标位置,计算在下一帧图像中目标的确切位置。在运动的过程中,目标可能会呈现一些图像上的变化,比如姿态或形状的变化、尺度的变化、背景遮挡或光线亮度的变化等。目标跟踪算法的研究也围绕着解决这些变化和具体的应用展开。浙江耐用目标跟踪