目标跟踪(Target Tracking)是近年来计算机视觉领域比较活跃的研究方向之一,它包含从目标的图像序列中检测、分类、识别、跟踪并对其行为进行理解和描述,属于图像分析和理解的范畴。从技术角度而言,目标跟踪的研究内容相当丰富,主要涉及到模式识别、图像处理、计算机视觉、人工智能等学科知识;同时,动态场景中运动的快速分割、目标的非刚性运动、目标自遮挡和目标之间互遮挡的处理等问题也为目标跟踪研究带来了一定的挑战。由于目标跟踪在视频会议、安全监控、导弹制导、医疗诊断、高级人机交互及基于内容的图像存储与检索等方面具有广泛的应用前景和潜在的经济价值。RV1126搭载AI智能算法,实现目标识别与跟踪。宁夏无源目标跟踪
现在城市里面植被丰富,天气干燥时加上不少树林落叶、枯枝和枯草,在室外烧纸、点火或乱扔烟头,就会容易引起火灾。国家明令禁止在公共场所吸烟,因此除了法律的约束,更加便捷的手段应该予以应用来弥补人力监管的不足。在火星识别领域,慧视光电开发的RV1126图像处理板,凭借小巧精悍的性能,优异的识别能力,具有重要作用。通过在传统监控、摄像头等设备中内置RV1126图像处理板,板卡将自带目标识别算法,能够对微小火星起到精确识别的功能,一旦目标区域出现火星,就能立刻向监管人员发出警报。反应时间越快,就越能杜绝火灾的发生,而快速响应的火星识别技术就是人力监管的得力帮手。宁夏无源目标跟踪成都智能化目标跟踪供应商。
云台的旋转将直接改变摄像机的视野,因此对于云台的控制必须谨慎且准确。错误的控制会使目标从视野中消失,导致跟踪的失败。此外,如果云台的控制幅度过小,可能会达不到目标回到视野中心的目的,目标也同样极易丢失。相反如果在对目标运动速度有可靠估计的前提下,提前将目标移到视野中目标运动方向的另一侧,将为此后跟踪目标赢得更多的时间,能够提高跟踪的成功率。所以为了使对于云台的控制更为合理,应该对于不同的情况采取不同的控制策略。对于情况的划分主要取决于目标的可靠性和速度的稳定性。
基于特征匹配的跟踪方法不考虑运动目标的整体特征,通过有目的的提取序列图像中的过零点、边缘轮廓、线段等相关特征或是部分特性,并建立匹配模板,对目标对象进行特征匹配,达到对目标对象跟踪的目的。假定运动目标可以由惟一的特征**表达,搜索到该相应的特征就认为跟踪上了运动目标。除了用单一的特征来实现跟踪外,还可以采用多个特征信息融合在一起作为跟踪特征。该算法主要包括特征提取和特征匹配两个方面。其中,特征提取指的是针对所包含的目标对象的序列图像选择合适的目标跟踪特性。无人机可能会受到敌方势力或者强风等因素干扰,造成不同幅度的振动,从而影响板卡能否正常完成任务。
视觉目标跟踪是指在视频图像序列的各帧图像中找到被跟踪的目标。基于区域的跟踪的基本思想是通过图像分割或预先人为确定,提取包含着运动目标的运动变化的区域范围作为匹配的目标模板,然后把目标模板与实时图像在所有可能位置上进行叠加,然后计算某种图像相似性度量的相应值,其比较大相似性相对应的位置就是目标的位置,Jorge等人提出的区域跟踪算法不仅利用了分割结果来给跟踪提供信息,同时也能利用跟踪所提供的信息改善分割效果,把连续帧的目标匹配起来跟踪目标。慧视RK3399图像处理板能实现24小时、无间隙信息化监控。宁夏无源目标跟踪
RK2588搭载AI智能算法,实现目标识别与跟踪。宁夏无源目标跟踪
YOLO算法具有以下几个明显的优势:快速高效:YOLO算法采用单次前向传播的方式进行目标检测和跟踪,相比传统方法的多次扫描图像,速度更快,适用于实时应用。准确性较高:通过引入先进的卷积神经网络和相关技术,YOLO算法在目标定位和类别预测方面具有较高的准确性。多尺度处理:YOLO算法通过特征金字塔网络和多尺度预测技术,可以处理不同大小的目标,并保持对小目标的有效检测。端到端训练:YOLO算法可以进行端到端的训练,避免了多阶段处理的复杂性,简化了算法的实现和使用。宁夏无源目标跟踪