与传统硬度计算不同的是,A 值不是由压痕照片得到,而是根据 “接触深度” hc(nm) 计算得到的。具体关系式需通过试验来确定,根据压头形状的不同,一般采用多项式拟合的方法,比如针对三角锥形压头,其拟合结果为:A = 24.5 + 793hc + 4238+ 332+ 0.059+0.069+ 8.68+ 35.4+ 36. 9式中 “接触深度”hc由下式计算得出:hc = h - ε P max/S,式中,ε是与压头形状有关的常数,对于球形或三角锥形压头可以取ε = 0.75。而S的值可以通过对载荷-位移曲线的卸载部分进行拟合,再对拟合函数求导得出,即,式中Q 为拟合函数。这样通过试验得到载荷-位移曲线,测量和计算试验过程中的载荷 P、压痕深度h和卸载曲线初期的斜率S,就可以得到样品的硬度值。该技术通过记录连续的载荷-位移、加卸载曲线,可以获得材料的硬度、弹性模量、屈服应力等指标,它克服了传统压痕测量只适用于较大尺寸试样以及只能获得材料的塑性性质等缺陷,同时也提高了硬度的检测精度,使得边加载边测量成为可能,为检测过程的自动化和数字化创造了条件。纳米力学测试助力新能源材料研发,提高能量转换效率。湖北核工业纳米力学测试参考价
纳米压痕仪简介,近年来,国内外研究人员以纳米压痕技术为基础,开发出多种纳米压痕仪,并实现了商品化,为材料的纳米力学性能检测提供了高效、便捷的手段。图片纳米压痕仪主要用于微纳米尺度薄膜材料的硬度与杨氏模量测试,测试结果通过力与压入深度的曲线计算得出,无需通过显微镜观察压痕面积。纳米压痕仪的基本组成可以分为控制系统、 移动线圈系统、加载系统及压头等几个部分。压头一般使用金刚石压头,分为三角锥或四棱锥等类型。试验时,首先输入初始参数,之后的检测过程则完全由微机自动控制,通过改变移动线圈系统中的电流,可以操纵加载系统和压头的动作,压头压入载荷的测量和控制通过应变仪来完成,同时应变仪还将信号反馈到移动线圈系统以实现闭环控制,从而按照输入参数的设置完成试验。湖北核工业纳米力学测试参考价纳米力学测试通常在真空或者液体环境下进行,以保证测试的准确性。
原位纳米力学测试系统是一种用于材料科学领域的仪器,于2011年10月27日启用。压痕测试单元:(1)可实现70nN~30mN不同加载载荷,载荷分辨率为3nN;(2)位移分辨率:0.006nm,较小位移:0.2nm,较大位移:5um;(3)室温热漂移:0.05nm/s;(4)更换压头时间:60s。能够实现薄膜或其他金属或非金属材料的压痕、划痕、摩擦磨损、微弯曲、高温测试及微弯曲、NanoDMA、模量成像等功能。力学测试芯片大小只为几平方毫米,亦可放置在电子显微镜真空腔中进行原位实时检测。
Berkovich压头是纳米压痕硬度计中较常用的。它可以加工得很尖,而且几何形状在很小尺度内保持自相似,适合于小尺度的压痕实验。目前,该类压头的加工水平:端部半径50nm,典型值约40nm,中心线和面的夹角精度为J=0.025°。在纳米压痕硬度测量中,Berkovich压头是一种理想的压头。优点包括:易获得好的加工质量,很小载荷就能产生塑性,能减小摩擦的影响。Cube-corner压头因其三个面相互垂直,像立方体的一个角,故取此名称。压头越尖,就会在接触区内产生理想的应力和应变。目前,该种压头主要用于断裂韧性(fracture toughness)的研究。它能在脆性材料的压痕周围产生很小的规则裂纹,这样的裂纹能在相当小的范围内用来估计断裂韧性。锥形压头圆锥具有尖的自相似几何形状,从模型角度常利用它的轴对称特性,纳米压痕硬度的许多模型均基于圆锥压痕。由于难以加工出尖的圆锥金刚石压头,它在小尺度实验中很少使用。纳米力学测试技术的发展推动了纳米材料和纳米器件的性能优化。
借助电子显微镜(EM)的原位纳米力学测试法,利用扫描电子显微镜或透射电子显微镜(TEM)的高分辨率成像,在EM 真空腔内进行原位纳米力学测试,根据纳米试样在EM真空腔中加载方式不同分为谐振法和拉伸法。原位测试法的较大优点是能够在 SEM 中实时观测试样的失效引发过程,甚至能够用 TEM 对缺陷成核和扩展情况进行原子级分辨率的实时观测;缺点是需在 EM 真空腔内对纳米试样施加载荷,限制了其加载环境,并且加载力的检测还需其他装置才能完成。纳米力学测试可应用于纳米材料、生物材料、涂层等领域的研究和开发。湖北核工业纳米力学测试参考价
纳米力学测试结果有助于优化材料设计,提升产品性能,降低生产成本。湖北核工业纳米力学测试参考价
对纳米元器件的电测量——电压、电阻和电流——都带来了一些特有的困难,而且本身容易产生误差。研发涉及量子水平上的材料与元器件,这也给人们的电学测量工作带来了种种限制。在任何测量中,灵敏度的理论极限是由电路中的电阻所产生的噪声来决定的。电压噪声[1]与电阻的方根、带宽和一定温度成正比。高的源电阻限制了电压测量的理论灵敏度[2]。虽然完全可能在源电阻抗为1W的情况下对1mV的信号进行测量,但在一个太欧姆的信号源上测量同样的1mV的信号是现实的。湖北核工业纳米力学测试参考价