纳米划痕法,纳米划痕硬度计主要是通过测量压头在法向和切向上的载荷和位移的连续变化过程,进而研究材料的摩擦性能、塑性性能和断裂性能的。纳米划痕仪器的设计主要有两种方案 纳米划痕计和压痕计,合二为一即划痕计的法向力和压痕深度由高分辨率的压痕计提供,同时记录匀速移动的试样台的位移,使压头沿试样表面进行刻划,切向力由压杆上的两个相互垂直的力传感器测量纳米划痕硬度计和压痕计相互单独。纳米划痕硬度计,不只可以研究材料的摩擦磨损行为,还普遍应用于薄膜的粘着失效和黏弹行为。对刻划材料来说,不只载荷和压入深度是重要的参数,而且残余划痕的深度、宽度、凸起的高度在研究接触压力和实际摩擦也是十分重要的。目前,该类仪器已普遍应用于各种电子薄膜、汽车喷漆、胶卷、光学镜 头、磁盘、化妆品(指甲油和口红)等的质量检测。纳米力学测试可以帮助研究人员了解纳米材料的疲劳行为,从而改进纳米材料的设计和制备工艺。广西核工业纳米力学测试厂家
纳米压痕技术通过测量压针的压入深度,根据特定形状压针压入深度与接触面积的关系推算出压针与被测样品之间的接触面积。因此,纳米压痕也被称为深度识别压痕(depth-sensing indentation,DSI) 技术。纳米压痕技术的应用范围非常普遍,可以用于金属、陶瓷、聚合物、生物材料、薄膜等绝大多数样品的测试。纳米压痕相关仪器的操作和使用也非常方便,加载过程既可以通过载荷控制,也可以通过位移控制,并且只需测量压针压入样品过程中的载荷位移曲线,结合恰当的力学模型就可以获得样品的力学信息。广西核工业纳米力学测试厂家跨学科合作,推动纳米力学测试技术不断创新,满足多领域需求。
纳米纤维已经展现出各种有趣的特性,除了高比表面积-体积比,纳米纤维相比于块状材料,沿主轴方向有更突出的力学特性。因此纳米纤维在复合材料、纤维、支架(组织工程学)、药物输送、创伤敷料或纺织业等领域是一种非常有应用前景的材料。纳米纤维机械性能(刚度、弹性变形范围、极限强度、韧性)的定量表征对理解其在目标应用中的性能非常重要,而测量这些参数需要高度专业画的仪器,必须具备以下功能:以亚纳米的分辨率测量非常小的变形;在测量的时间量程(例如100 s)内在纳米级的位移下保持高度稳定的测量系统;以亚纳米分辨率测量微小力;处理(捡取-放置)纳米纤维并将其放置在机械测试仪器上。
样品制备,纳米力学测试纳米纤维的拉伸测试前需要复杂的样品制备过程,因此FT-NMT03纳米力学测试具备微纳操作的功能,纳米力学测试利用力传感微镊或者微力传感器可以对单根纳米纤维进行五个自由度的拾取-放置操作(闭环)。可以使用聚焦离子束(FIB)沉积或电子束诱导沉积(EBID)对样品进行固定。纳米力学测试这种结合了电-机械测量和纳米加工的技术为大多数纳米力学测试应用提供了完美的解决方案。SEM/FIB集成,得益于FT-NMT03纳米力学测试系统的紧凑尺寸(71×100×35mm),该系统可以与市面上绝大多数的全尺寸SEM/FIB结合使用,在样品台上安装和拆卸该系统十分简便,只需几分钟。此外,由于FT-NMT03纳米力学测试的独特设计(无基座、开放式),纳米力学测试体系统可以和电子背向散射衍射仪(EBSD)和扫描透射电子显微镜(STEM)技术兼容。通过纳米力学测试,可以优化材料的加工工艺,提高产品的性能和品质。
纳米科学与技术是近二十年来发展起来的一门前沿和交叉学科,纳米力学作为其中的一个分支,对其他分支学科如纳米材料学、物理学、生物医学等都有着重要的支撑作用。下面简要介绍一下目前应用较普遍的两类微纳米力学测试方法:纳米压痕方法和基于原子力显微镜的纳米力学测试方法。纳米压痕是20 世纪90 年代初期快速发展起来的一种微纳米力学测试方法,是研究微纳米尺度材料力学性能的重要方法之一,在科研和工业领域都有着普遍的应用。纳米压痕的压入深度在一般在纳米量级,远小于传统压痕的微米或毫米量级。限于光学显微镜的分辨率,无法直接对纳米压痕的尺寸进行精确测量。纳米力学测试的结果对于预测纳米材料在实际应用中的表现具有重要参考价值。广西核工业纳米力学测试厂家
通过纳米力学测试,我们可以深入了解纳米材料在受到外力作用时的变形和破坏机制。广西核工业纳米力学测试厂家
纳米力学(Nanomechanics)是研究纳米范围物理系统的基本力学(弹性,热和动力过程)的一个分支。纳米力学为纳米技术提供科学基础。作为基础科学,纳米力学以经验原理(基本观察)为基础,包括:一般力学原理和物体变小而出现的一些特别原理。纳米力学(Nanomechanics)是研究纳米范围物理系统基本力学性质(弹性,热和动力过程)的纳米科学的一个分支。纳米力学为纳米技术提供了科学基础。纳米力学是经典力学,固态物理,统计力学,材料科学和量子化学等的交叉学科。广西核工业纳米力学测试厂家