在汽车空调关键零部件——蒸发器的低温焊接接头检测中,该高精度氦气检漏设备的低温环境模拟技术凸显价值。设备将蒸发器置于 -30℃ 的低温箱中,等待温度稳定之后,再对内部充入 0.6MPa 的氦气,利用氦气在低温下的高穿透性,检测焊接接头在冷缩状态下的泄漏情况。数据显示,大约有5% 的焊接接头在常温检测合格后,会在低温下因为材料收缩产生微漏的情况(泄漏率 5×10⁻¹⁰ Pa・m³/s),该技术确保了蒸发器在汽车冬季制冷循环中无制冷剂泄漏。压缩机缸体水套检漏,氦气设备双腔隔离法避免误判。上海检测汽车空调系统关键零部件高精度氦气检漏设备按需设计
在汽车空调关键零部件——蒸发器的检测中,该高精度氦气检漏设备的快速循环检测技术大幅缩短了检测时间。该技术通过优化氦气充压、保压和检测的流程,将单个蒸发器的检测时间控制在 10 秒以内。同时在检测过程中,设备能够快速实现氦气的充入和排出,从而减少了等待时间。除此之外,设备的氦质谱仪响应速度快,能在短时间之内准确检测出氦气的泄漏量。快速循环检测技术的应用,使得蒸发器的检测效率得到明显提升,满足了蒸发器大批量生产的需求,从而提高了生产线的整体产能。上海检测汽车空调系统关键零部件高精度氦气检漏设备按需设计蒸发器自适应检测,氦气设备依参数自动调检测程序。

汽车空调关键零部件——热交换器的检测需要同时兼顾效率和精度,该高精度氦气检漏设备的并行检测技术能够很好地平衡这两方面的需求。该技术允许设备同时对多个热交换器进行检测,每个检测工位自主工作,并且互不干扰。在检测过程中,设备能同时对每个热交换器的泄漏率进行监测和记录,检测精度不受并行检测数量的影响。并行检测技术的应用,使得热交换器的检测效率得到成倍提高,同时保证了检测的高精度,为热交换器的大规模生产提供了有力的检测支持。
热交换器异种材料连接检测: 在检测铝-铜异种材料焊接的热交换器时,设备的热冲击辅助技术就发挥了关键作用。设备会对热交换器进行-40℃至120℃的剧烈温度冲击,通常循环50次。这样做的原理是利用铝和铜热膨胀系数的巨大差异,把潜在的微漏缺陷给“撑”开、放大。接着再进行高精度的氦气检测。这种方法可以提前暴露车辆长期使用后可能出现的泄漏隐患,使热交换器的使用寿命评估准确性提升了40%,特别适合用在新能源汽车里那些多材料复合的热管理系统上。冷凝器检测数据存储,氦气设备为质量追溯提供依据。

汽车空调冷凝器的检测中,高精度氦气检漏设备的在线检测功能实现了与生产线的无缝对接。设备被集成在冷凝器生产线上,当冷凝器通过生产线输送至检测工位时,设备自动启动检测程序,无需人工干预。检测过程中,设备与生产线的控制系统实时通信,根据生产线的速度自动调整检测节奏,确保检测工作与生产同步进行。检测完成后,设备将检测结果实时反馈给生产线控制系统,对于不合格产品,生产线会自动将其剔除。这种在线检测方式不仅提高了检测效率,还能及时发现生产过程中的问题,便于及时调整生产工艺,提高冷凝器的生产质量。电子膨胀阀阀体强度与密封,氦气设备联合检测效率高。上海检测汽车空调系统关键零部件高精度氦气检漏设备按需设计
高精度氦气设备检测压缩机,自动完成充压、检测等流程。上海检测汽车空调系统关键零部件高精度氦气检漏设备按需设计
热交换器检测 - 设备网络通信功能: 在热交换器的氦气泄漏检测过程中,高精度氦气检漏设备配备的网络通信功能(通常是以太网)发挥了重要作用,它实现了检测数据的便捷共享和高效管理。设备可以通过网络线直接连接到工厂的管理系统,把每一次检测的关键数据,像泄漏率、检测结果、时间戳等,都实时上传到管理系统的数据库里。这样一来,管理人员即使不在车间现场,也能远程监控到所有设备的检测状态和结果,并且可以方便地对历史数据进行统计分析和追溯。反过来,管理系统也可以向检测设备发送指令,比如远程调整检测参数(压力、时间等)、启动或停止检测任务等等。这个网络通信功能的应用,真正做到了让检测数据集中管理、让设备运行远程可控,极大地提升了整个生产管理的信息化水平和日常工作的效率。上海检测汽车空调系统关键零部件高精度氦气检漏设备按需设计