您好,欢迎访问

商机详情 -

贵州AI智能智慧眼

来源: 发布时间:2024年06月09日

例如在工厂库房,它能够限度地提高供应链的效率,提高整体生产率。通过AI来分析和监控库存,并根据收集客户的购物习惯,从而提升服务体验,增加市场竞争力。在自动驾驶领域,AI赋能的摄像头能够自动化识别监控周边环境,判断路面是否存在障碍物,从而在自动驾驶时精确避障。在人员密集的开放性场所,如车站、商城等,AI算法赋能的摄像头能够监控每一个人的行为举止,当出现危险性行为时,AI监控就能立即识别并报警,减少危险行为的进一步伤害。在制造业领域,搭载AI算法的摄像头能够比人眼更加精确的判断产品是否出现瑕疵,从而提升良品率。AI算法赋能下的图像处理板能够进行智能目标识别。贵州AI智能智慧眼

AI智能

人工智能为各行各业带来了产业变革,如工业4.0、无人驾驶等领域。但是对于一般中小企业而言,人工智能的开发需要投入大量的时间和金钱,包括长时间反复的深度学习模型训练、人才的培养、大量数据模型的采集标注,这些加起来的成本不可预估,并且很关键的一点是,所有的投入不一定会达到预期的效果。基于这样的行业痛点,慧视SpeedDP深度学习算法开发平台应运而生。通过提供丰富的算法参数设置接口,来满足不同用户业务场景的定制化需求。贵州AI智能智慧眼慧视RK3399图像处理板能实现24小时、无间隙信息化监控。

贵州AI智能智慧眼,AI智能

近年来,人们越来越认识到深入理解机器学习数据的必要性。不过,鉴于检测大型数据集往往需要耗费大量人力物力,它在计算机视觉领域的广泛应用,尚有待进一步开发。通常,在物体检测中,通过定义边界框,来定位图像中的物体,不仅可以识别物体,还能够了解物体的上下文、大小、以及与场景中其他元素的关系。同时,针对类的分布、物体大小的多样性、以及类出现的常见环境进行了解,也有助于在评估和调试中发现训练模型中的错误模式,从而更有针对性地选择额外的训练数据。

深度学习是机器学习的一个分支,只在近十年内才得到广泛的关注与发展。它与机器学习不同的,它模拟我们人类自己去识别人脸的思路。比如,神经学家发现了我们人类在认识一个东西、观察一个东西的时候,边缘检测类的神经元先反应比较大,也就是说我们看物体的时候永远都是先观察到边缘。就这样,经过科学家大量的观察与实验,总结出人眼识别的模式是基于特殊层级的抓取,从一个简单的层级到一个复杂的层级,这个层级的转变是有一个抽象迭代的过程的。深度学习就模拟了我们人类去观测物体这样一种方式,首先拿到互联网上海量的数据,拿到以后才有海量样本,把海量样本抓取过来做训练,抓取到重要特征,建立一个网络,因为深度学习就是建立一个多层的神经网络,肯定有很多层。有些简单的算法可能只有四五层,但是有些复杂的,像刚才讲的谷歌的,里面有一百多层。当然这其中有的层会去做一些数学计算,有的层会做图像预算,一般随着层级往下,特征会越来越抽象。AI算法能够帮助进行空中哨兵建设。

贵州AI智能智慧眼,AI智能

SpeedDP有4+3的功能组合,为不同需求的客户提供定制化服务。项目配置:含任务属性(当前支持目标检测)、算法模型(当前支持YOLO-X)、项目参数等;模型训练:支持模型参数配置、训练过程可视化等;模型评估:支持评价体系(如:AP)、结果统计等;数据测试:支持数据(图像、视频)的实时加载测试,输出OSD叠加后的测试结果;自动标注:基于导入数据集快速生成标注结果,支持标注工具(LabelImg)读取和调整;(可选)模型部署:支持PC端、嵌入式端(瑞芯微平台,RKNN/RKNN2)两种部署方式;(可选)Web服务:支持快速搭建Web服务,用于团队内部或对外进行快捷访问和申请服务;(可选)AI热潮下,越先使用AI图像标注越能获益。贵州AI智能智慧眼

SpeedDP是深度学习领域的产品。贵州AI智能智慧眼

图像识别技术是在不断发展的,每一代都有比较突出的一项技术涌现。神经网络图像识别技术是一种比较新型的图像识别技术,是在传统的图像识别方法和基础上融合神经网络算法的一种图像识别方法。这里的神经网络是指人工神经网络也就是说这种神经网络并不是动物本身所具有的真正的神经网络,而是人类模仿动物神经网络后人工生成的。在神经网络图像识别技术中,遗传算法与BP网络相融合的中经网络图像识别模型是非常经典的,在很多领域都有它的应用。贵州AI智能智慧眼