您好,欢迎访问

商机详情 -

安防AI智能目标跟踪

来源: 发布时间:2024年09月17日

无人机搭载如光电吊舱等带有摄像头的设备后,达到了实现智能识别的硬件条件,但是传统的摄像头只能获取图像,并不具备AI识别的功能。无人机AI识别算法的关键还是在于模仿人眼一样进行视觉处理,然后AI进行智能提取和分析图像,再和训练模型进行快速比对,从而在无人机快速飞行的过程中做到实时目标识别。要想实现目标识别需要的硬件支持就是AI图像处理板。图像处理板通过算法的赋能,就能够对目标区域的物体进行AI识别分析,从而做出判断。由于无人机作业的环境复杂,因此对于图像处理板的要求需要进一步提升。成都慧视开发的Viztra-HE030图像处理板,采用了工业级芯片RK3588,采用先进架构,8核(4大4小)处理,算力能够达到6.0TOPS。同时,慧视光电能够根据需求环境定制丰富的输出接口。标注需要大量人工劳动一直是采用计算机视觉的主要障碍之一。安防AI智能目标跟踪

AI智能

SpeedDP包含如下五个模块:1.数据集管理:采集并制作用于训练和测试的数据集;2.项目配置:根据项目的实际情况,对调整相关配置参数进行定制化开发;3.模型训练:完成训练参数配置,开始模型训练并监控训练过程,损失精度可接受时,暂停训练;4.模型测试:使用数据集或实际业务场景图像视频数据进行模型评估;5.模型部署:模型测试结果达到预期,进行模型转化和部署。据客户反馈,使用了慧视光电的SpeedDP后,初步提升效率在80%以上,开发周期缩短,同时可售可租的模式,也让企业的选择更加灵活,为所在单位降本增效提供帮助。安防AI智能目标跟踪SpeedDP能够在七到八毫秒的短时间内标注一张图像。

安防AI智能目标跟踪,AI智能

除了高质量数据集产品外,凤凰数据还将推出以数据为中心的一站式AI训练平台,计划于近期开放内测。平台将与高质量数据集市实现互联互通,确保数据在平台内的安全使用。平台也将提供一系列以数据为中心的服务,包括丰富的数据处理工具、可视化模型训练和微调套件、大量的数据和模型评估框架和多云异构的算力资源。在内地,也有很多企业开发了类似平台,慧视光电推出的AI自动图像标注平台SpeedDP就是一个以数据为中心的一站式AI训练平台,通过平台能够让AI不断进行学习,进而更加精确的识别图像。

激光除草是通过激光照射杂草,使草叶内部细胞脱水破裂死亡的物理靶向除草方法。哈工大机器人实验室与华工科技合作研发的全天候智能激光除草机器人集成深度学习的人工智能技术,AI智能识别杂草,十分高效;同时针对性开发先进的多目标靶点定位及动态时延误差补偿算法,不仅能够准确高效识别杂草和高精度定位目标分生组织,同时不损伤作物、不污染土壤、不耗费人力,而且适应性强,生产效率高,促进农业经济高质量发展。激光除草模式中AI智能识别是很关键的一环,需要机器人正确识别杂草,而这基于AI的深度学习、目标识别检测等功能,通过不断的训练学习,AI能够精细识别什么是杂草什么是作物。目前,市面上比较好用的AI深度学习平台众多,例如成都慧视推出的SpeedDP深度学习算法开发平台,就能够通过大量的数据部署,再经过长时间的训练,就能够实现跟人眼一样的目标识别能力。通过海量的数据模型训练,SpeedDP能够更加聪明。

安防AI智能目标跟踪,AI智能

机器人是AI落地应用的一个很重要载体,AI赋能的机器人能够在安防巡检、自动化作业、应急救援等领域发挥重要作用。在电力巡检当中,传统的模式需要人工一步一步走出来,面对假设在各种环境中的输电线,这种模式弊端重重,费时费力。而常年经受风吹雨晒的输电线,在使用久了之后,难免会出现电力设备损坏缺失等问题,AI赋能下的机器人的出现,为这项行业的工作效率的提升提供了新思路。巡检机器人内置可见光和红外摄像头,能够实现昼夜巡检,然后再内置高性能的AI图像处理板,就能够运用AI识别、多机协同、数字孪生、巡检监控等技术,实现自动巡视、缺陷和表计自动识别和告警、巡视报表自动生成和发送等功能,实现场站式巡检场景的全息感知和全域决策辅助。我国今年也把“人工智能+”写入了工作报告。安防AI智能目标跟踪

人工智能和机器学习可以帮助施工团队更有效地管理资源,从而节省成本。安防AI智能目标跟踪

在进行目标识别跟踪时,OSD字符能够帮助使用者更加清晰的看到识别跟踪的效果,OSD字符叠加是目标跟踪领域一个重要的部分,它能够将各种图像文本添加到视频当中,实现字符与视频的叠加,进而辅助进行目标检测、跟踪的识别,便于观察目标。经过多年技术积累及更新迭代,以及客户对OSD字符叠加的需求整理,我们将OSD拆分为多个组件,包括文字,角度显示刻度线,矩形框,圆,多边形,指北针等组件,可灵活设置位置、字号、颜色等属性,为用户定制OSD提供方便。安防AI智能目标跟踪