您好,欢迎访问

商机详情 -

潍坊IBAF脱氮反应器系统

来源: 发布时间:2023年12月27日

脱氮反应器材质选择:脱氮反应器通常采用不锈钢、玻璃钢、碳钢等耐腐蚀材料制成。根据处理废气的性质和温度,还可以选择合适的内衬材料,如陶瓷、橡胶等。结构和设计:脱氮反应器的结构和设计对其性能和效率有着重要的影响。通常,反应器内部会设置不同的填料和构件,如蜂窝状陶瓷填料、弹性填料、筛板等,以提高反应效率和促进微生物的生长。此外,反应器的设计应考虑到废气的流动路径、停留时间、气体分布等因素,以确保良好的气液相传质效果。高效脱氮设备经过对菌种的改性,填料的改良,更针对于废水中总氮的去除。潍坊IBAF脱氮反应器系统

脱氮反应器

脱氮反应器的短程硝化反硝化工艺的优势:与传统脱氮工艺过程相比,短程硝化-反硝化体现出以下优势。节能:硝化阶段,供氧量节省近25%,降低能耗;节约外加碳源:从NO2-到N2要比从NO3-到N2的反硝化过程中,减少40%的有机碳源;可以缩短水力停留时间:在高氨环境下,NH4+的硝化速率和NO2-的反硝化速率均比NO2-的氧化速率和NO3-的反硝化速率快,因此水力停留时间可以缩短,反应器的容积也相应减小;可减少剩余污泥产量:亚硝酸菌表观产率系数为0.04~0.13gVSS/gN,硝酸菌的表观产率系数为0.02~0.07gVSS/g N,NO2-反硝化菌和NO3-反硝化菌的表观产率系数分别为0.345gVSS/gN和0.765gVSS/gN,因此短程硝化反硝化过程中可以减少产泥24~33%,在反硝化过程中可少产泥50%。潍坊IBAF脱氮反应器系统保持脱氮反应器的良好状态是其正常运行和长期使用的前提。

潍坊IBAF脱氮反应器系统,脱氮反应器

短程硝化反硝化生物脱氮反应器的目的是为了解决现有短程硝化反硝化生物脱氮工艺设备占地面积大,基建费用高,运行调试需要专业人员控制,运行管理非常复杂的现状。本设备将空气推流区、曝气区、缺氧区和沉淀区有机组成,形成一体化反应器。设备组成由生物脱氮反应器:1、水箱;2、平衡水箱;3、液体流量计;4、气体流量计;5、空气压缩机;6、空气推流器;7、排泥孔;8、出水口。本设备能实现稳定的短程硝化反硝化过程,并且具有结构简单,占地面积小,动力消耗低,氧传递效率高,自动化控制程度高的优点。能适用于多种含氮污水处理,处理效果好,出水水质稳定。

高效AMX脱氮反应器,属于污水处理设备技术领域。它包括壳体,壳体的内底部通过支架固定连接有布水器,壳体的侧壁底端设有进水管,进水管与布水器相连通,壳体的内壁中心处通过支架固定连接有筒体,筒体的上下两端均固定连接有筛网,筒体的内部放置有依附料,依附料的缝隙间填充有氧氨氧化颗粒污泥,壳体的内顶部固定连接有导流板和三相分离器,三相分离器上固定连通有排水管和排气管。本实用新型通过将刚进入壳体的高浓度硝态氮污水首先与壳体内部的污水混合稀释到一定程度,再与污泥接触发生反应,从而有效地避免了过高的污水浓度抑制厌氧氨氧化过程。氨化反应:氨化反应是指污水中的蛋白质和氨基酸在脱氨基酶作用下转化为氨氮的过程。

潍坊IBAF脱氮反应器系统,脱氮反应器

脱氮反应器的运作原理主要包括 反硝化反应:在反硝化反应阶段,硝酸根被转化为氮气,这一过程由反硝化菌完成。与硝化反应相比,反硝化反应需要较低的氧气浓度和较高的pH值。化学方程式:6NO3- + 4H+ + 5O2 → 4N2 + 8H2O;设计考虑因素:设计脱氮反应器时,需要考虑以下因素:操作条件:脱氮反应器的操作条件对处理效果也有重要影响。温度、pH值、氧气浓度、停留时间等参数需要根据具体的工艺要求进行调整和控制。此外,合适的营养物质添加方案也是提高脱氮效率的关键因素。例如,对于反硝化反应,需要提供合适的碳源(如甲醇、乙醇等)作为反硝化的能源。同化作用:污水中的一部分氮被微生物吸收作为生物体的组成成分。潍坊IBAF脱氮反应器系统

单级全程自养脱氮(CANON)工艺是一种基于亚硝酸氮的单级全程自养脱氮工艺。潍坊IBAF脱氮反应器系统

ANAMMOX脱氮反应器是新一代污水生物脱氮技术,具有高效、节能、减少温室气体排放和环境友好等优势。城镇污水的生物脱氮处理氨氮浓度较低,对短程硝化的有效控制提出挑战,同时厌氧氨氧化在低浓度、短水力停留时间(HRT)、高负荷中试运行中需要切实有效措施实现稳定运行。本项目拟通过实现反应器的更好的设计和运行条件的优化,并开发控制模块软件,实现低氨氮条件短程硝化稳定运行。采用菌群颗粒化与膜生物反应器相结合的方式,确定反应器结构、高径比、水力负荷和气体上升速率,得到更好的运行工艺参数以减缓膜污染,考察菌群多样性及功能,形成低氨氮、高负荷条件下ANAMMOX的稳定高效运行。潍坊IBAF脱氮反应器系统

标签: 厌氧反应器