您好,欢迎访问

商机详情 -

温州单晶氮化铝

来源: 发布时间:2023年06月12日

生产方法:将氨和铝直接进行氮化反应,经粉碎、分级制得氮化铝粉末。或者将氧化铝和炭充分混合,在电炉中于1700℃还原制得氮化铝。将高纯度铝粉脱脂(用抽提或在氮气流中加热到150℃)后,放到镍盘中,将盘放在石英或瓷制反应管内,在提纯的氮气流中慢慢地进行加热。氮化反应在820℃左右时发出白光迅速地进行。此时,必须大量通氮以防止反应管内出现减压。这个激烈的反应完毕后,在氮气流中冷却。由于产物内包有金属铝,可将其粉碎,并在氮气流中于1100~1200℃温度下再加热1~2h,即得到灰白色氮化铝。另外,将铝在1200~1400℃下蒸发气化,使其与氮气反应即得到氮化铝的须状物(金属晶须)。此外,也有将AlCl3·NH3加成物进行热分解的制法。直接氮化法:将氮和铝直接进行氮化反应,经粉碎、分级制得。氮化铝产品质量受反应炉温、原料的预混合以及循环氮化铝粉末所占的混合比例、氮化铝比表面积等条件的影响。因此需严格控制工艺过程,得到稳定特性的氮化铝粉末(如比表面积、一次粒径、凝聚粒径、松密度和表面特性等)。氮化铝是共价化合物,具有熔点高、自扩散系数小的特点。温州单晶氮化铝

温州单晶氮化铝,氮化铝

氮化铝粉体的制备工艺:原位自反应合成法:原位自反应合成法的原理与直接氮化法的原理基本类同,以铝及其它金属形成的合金为原料,合金中其它金属先在高温下熔出,与氮气发生反应生成金属氮化物,继而金属Al取代氮化物的金属,生产AlN。其优点是工艺简单、原料丰富、反应温度低,合成粉体的氧杂质含量低。其缺点是金属杂质难以分离,导致其绝缘性能较低。等离子化学合成法:等离子化学合成法是使用直流电弧等离子发生器或高频等离子发生器,将Al粉输送到等离子火焰区内,在火焰高温区内,粉末立即融化挥发,与氮离子迅速化合而成为AlN粉体。其优点是团聚少、粒径小。其缺点是该方法为非定态反应,只能小批量处理,难于实现工业化生产,且其氧含量高、所需设备复杂和反应不完全。温州单晶氮化铝成型工艺是陶瓷制备的关键技术,是提高产品性能和降低生产成本的重要环节之一。

温州单晶氮化铝,氮化铝

氮化铝选用高纯度且为微粉的“氮化铝粉末”,一般而言氧质量含量在1.2%以下,碳质量含量为0.04%以下,Fe含量为30ppm以下,Si含量为60ppm以下。氮化铝粉体的很大粒径很好控制在20μm以下的氮化铝粉末。此处,“氧”基本上属于杂质,但有防止过分煅烧的作用,因此为了防止煅烧导致的煅烧体强度下降优先选用氧质量含量在0.7%以上的氮化铝粉末。此外,在原料中常含有“煅烧助剂”,大多使用稀土金属化合物、碱土金属化合物、过渡金属化合物等。例如可选用氧化钇或氧化铝等,这些煅烧助剂与氮化铝粉体形成复合的氧化物液相,该液相带来煅烧体的高密度化,同时,提取氮化铝晶粒中属于杂质的氧,以结晶晶界的氧化物进行偏析,从而使氮化铝基板的导热率提高。

由于具有优良的热、电、力学性能。氮化铝陶瓷引起了国内外研究者的较广关注,随着现代科学技术的飞速发展,对所用材料的性能提出了更高的要求。氮化铝陶瓷也必将在许多领域得到更为较广的应用!虽然多年来通过许多研究者的不懈努力,在粉末的制备、成形、烧结等方面的研究均取得了长足进展。但就截止2013年4月而言,氮化铝的商品化程度并不高,这也是影响氮化铝陶瓷进一步发展的关键因素。为了促进氮化铝研究和应用的进一步发展,必须做好下面两个研究工作。研究低成本的粉末制备工艺和方法!制约氮化铝商品化的主要因素就是价格问题。若能以较低的成本制备出氮化铝粉末,将会提高其商品化程度!高温自蔓延法和低温碳热还原合成工艺是很有发展前景的粉末合成方法。二者具有低成本和适合大规模生产的特点!研究复杂形状的氮化铝陶瓷零部件的净近成形技术如注射成形技术等。它对充分发挥氮化铝的性能优势.拓宽它的应用范围具有重要意义!氮化铝陶瓷成为新一代大规模集成电路、半导体模块电路及大功率器件的理想散热和封装材料。

温州单晶氮化铝,氮化铝

颗粒形状的影响:相较于颗粒尺寸对氮化铝陶瓷的影响,颗粒的形貌对其的影响主要集中在粉体的流动性以及填充率的增加上。工业上一般认为氮化铝粉体呈球形为合理的选择。球形粉体比其他形状如棒状,双头六角形状流动性更好,且填充率也会相对高一些。特别是对于把氮化铝作为填料的工业领域,流动性差意味着难以均匀混合,势必会对产品的性能造成一定的负面影响。氮化铝粉体填充率越高,其热膨胀系数就越小,热导率越高。相较于其它形状来说,球形粉体制成的封装材料应力集中小、强度高。而且球形粉体摩擦系数小,对模具的磨损小,可延长模具的使用寿命,提高经济效益。氮化铝陶瓷基片,热导率高,膨胀系数低,强度高,耐高温,耐化学腐蚀,电阻率高,介电损耗小。温州单晶氮化铝

氮化铝要以热压及焊接式才可制造出工业级的物料。温州单晶氮化铝

活性金属钎焊法是在普通钎料中加入一些化学性质较为活泼的过渡元素如:Ti、Zr、Al、Nb、V等。一定温度下,这些活泼元素会与陶瓷基板在界面处发生化学反应,形成反应过渡层,如图7所示。反应过渡层的主要产物是一些金属间化合物,并具有与金属相同的结构,因此可以被熔化的金属润湿。共烧法是通过丝网印刷工艺在AlN陶瓷生片表面涂刷一层难熔金属(Mo、W等)的厚膜浆料,一起脱脂烧成,使导电金属与AlN陶瓷烧成为一体结构。共烧法根据烧结温度的高低可分为低温共烧(LTCC)和高温共烧(HTCC)两种方式,低温共烧基板的烧结温度一般为800-900℃,而高温共烧基板的烧结温度为1600-1900℃。烧结后,为了便于芯片引线键合及焊接,还需在金属陶瓷复合体的金属位置镀上一层Sn或Ni等熔点较低的金属。温州单晶氮化铝

上海布朗商行有限公司专注技术创新和产品研发,发展规模团队不断壮大。公司目前拥有专业的技术员工,为员工提供广阔的发展平台与成长空间,为客户提供高质的产品服务,深受员工与客户好评。公司业务范围主要包括:三防漆,防湿剂,化学品原料,电子机械等。公司奉行顾客至上、质量为本的经营宗旨,深受客户好评。公司深耕三防漆,防湿剂,化学品原料,电子机械,正积蓄着更大的能量,向更广阔的空间、更宽泛的领域拓展。