氮化铝的应用:压电装置应用:氮化铝具备高电阻率,高热导率(为Al2O3的8-10倍),与硅相近的低膨胀系数,是高温和高功率的电子器件的理想材料。电子封装基片材料:常用的陶瓷基片材料有氧化铍、氧化铝、氮化铝等,其中氧化铝陶瓷基板的热导率低,热膨胀系数和硅不太匹配;氧化铍虽然有优良的性能,但其粉末有剧毒。在现有可作为基板材料使用的陶瓷材料中,氮化硅陶瓷抗弯强度很高,耐磨性好,是综合机械性能很好的陶瓷材料,同时其热膨胀系数很小。而氮化铝陶瓷具有高热导率、好的抗热冲击性、高温下依然拥有良好的力学性能。纯净的AlN陶瓷可以用作透明陶瓷制造电子光学器件装备的高温红外窗口和整流罩的耐热涂层。温州高导热氮化铝粉体生产商
氮化铝陶瓷是一种综合性能优良的新型陶瓷材料,具有优良的热传导性,可靠的电绝缘性,低的介电常数和介电损耗,无毒以及与硅相匹配的热膨胀系数等一系列优良特性,被认为是新一代高集成度半导体基片和电子器件的理想封装材料。另外,氮化铝陶瓷可用作熔炼有色金属和半导体材料砷化镓的坩埚、蒸发舟、热电偶的保护管、高温绝缘件,同时可作为耐高温耐腐蚀结构陶瓷、透明氮化铝陶瓷制品,因而成为一种具有较广应用前景的无机材料。陶瓷的透明度,一般指能让一定的电磁频率范围内的电磁波通过,如红外频谱区域中的电磁波若能穿透陶瓷片,则该陶瓷片为红外透明陶瓷。纯净的AlN陶瓷为无色透明晶体,具有优异的光学性能,可以用作制造电子光学器件装备的高温红外窗口和整流罩的耐热涂层。因此,氮化铝陶瓷在方面具有很好的应用。温州高导热氮化铝粉体生产商与氧化铍不同的是氮化铝无毒,氮化铝用金属处理,能取代矾土及氧化铍用于大量电子仪器。
颗粒形状的影响:相较于颗粒尺寸对氮化铝陶瓷的影响,颗粒的形貌对其的影响主要集中在粉体的流动性以及填充率的增加上。工业上一般认为氮化铝粉体呈球形为合理的选择。球形粉体比其他形状如棒状,双头六角形状流动性更好,且填充率也会相对高一些。特别是对于把氮化铝作为填料的工业领域,流动性差意味着难以均匀混合,势必会对产品的性能造成一定的负面影响。氮化铝粉体填充率越高,其热膨胀系数就越小,热导率越高。相较于其它形状来说,球形粉体制成的封装材料应力集中小、强度高。而且球形粉体摩擦系数小,对模具的磨损小,可延长模具的使用寿命,提高经济效益。
AlN自扩散系数小难以烧结,一般采用添加碱土金属化合物及稀土镧系化合物,通过液相烧结实现烧结致密化。烧结助剂能在烧结初期和中期明显促进AlN陶瓷烧结,并且在烧结的后期从陶瓷材料中部分挥发,从而制备纯度及致密化程度都较高的AlN陶瓷材料及制品。在此过程中,助烧剂的种类、添加方式、添加量等均会对AlN陶瓷材料及制品的结构与性能产生明显程度的影响。选择AlN陶瓷烧结助剂应遵循以下原则:能在较低的温度下与AlN颗粒表面的氧化铝发生共熔,产生液相,这样才能降低烧结温度;产生的液相对AlN颗粒有良好的浸润性,才能有效起到烧结助剂作用;烧结助剂与氧化铝有较强的结合能力,以除去杂质氧,净化AlN晶界;液相的流动性好,在烧结后期AlN晶粒生长过程中向三角晶界流动,而不至于形成AlN晶粒间的热阻层;烧结助剂很好不与AlN发生反应,否则既容易产生晶格缺陷,又难于形成多面体形态的AlN完整晶形。氮化铝可用作铝、铜、银、铅等金属熔炼的坩埚和烧铸模具材料。
提高氮化铝陶瓷热导率的途径:选择合适的烧结工艺,热压烧结:热压烧结是指在机械压力和温度同时作用下,对粉料进行烧结获得致密块体的过程。热压烧结可以使加热烧结和加压成型同时进行。在高温下坯体持续受到压力作用,粉末原料处于热塑性状态,有利于物质的扩散和流动,并且外加压力抵消了形变阻力,促进了粉末颗粒之间的接触。热压烧结可以降低氮化铝陶瓷的烧结温度,而且不用烧结助剂也能使氮化铝烧结致密,且除氧能力强,但是缺点是设备昂贵,而且只能制备形状简单的样品。氮化铝粉体的制备工艺主要有直接氮化法和碳热还原法。温州高导热氮化铝粉体生产商
凝胶流延成型和注凝成型,成为氮化铝陶瓷的主要生产方法,从而促进氮化铝陶瓷的推广与应用。温州高导热氮化铝粉体生产商
氮化铝基板材料热膨胀系数(4.6×10-6/K)与SiC芯片热膨胀系数(4.5×10-6/K)相近,导热率系数大(170-230W/m▪K),绝缘性能优异,可以适应SiC的应用要求,是搭载SiC半导体的理想基板材料。以往,氮化铝基板主要通过如下工艺制备:在氮化铝粉末中混合煅烧助剂、粘合剂、增塑剂、分散介质、脱模机等添加剂,通过挤出成型在空气中或氮等非氧化性气氛中加热到350-700℃而将粘合剂去除后(脱脂),在1800-1900℃的氮等非氧化性气氛中保持0.5-10小时的(煅烧)。该法制备氮化铝基板的缺陷:通过上述工艺制备出来的氮化铝基板材料,其击穿电压在室温下显示为30-40kV/mm左右的高绝缘性,但在400℃的高温下则降低到10kV/mm左右。在高温下具备优异绝缘特性的氮化铝基板的制备方法。通过该法可制备出耐高温氮化铝基板材料具有如下特点:氮化铝晶粒平均大小为2-5μm;热导率为170W/m▪K以上;不含枝状晶界相;在400℃下的击穿电压为30kV/mm以上。温州高导热氮化铝粉体生产商