ACM8815从电路和布局两方面优化EMC性能:电路级优化:展频技术(SSG):DSP引擎生成伪随机调制信号,对开关频率进行±5%的抖动调制,将EMI峰值降低10dB以上。边沿速率控制:通过调节GaNMOSFET栅极驱动电阻(典型值5Ω),将开关边沿时间控制在10ns以内,避免过慢边沿导致高频谐波增多。共模滤波:在PVDD和GND之间并联10μF+0.1μF陶瓷电容,滤除电源噪声;在输出端串联10Ω电阻+100nF电容组成LC滤波器,抑制共模干扰。布局级优化:关键信号隔离:将数字电路(DSP、I2S接口)与模拟电路(输入缓冲、误差放大器)分区布局,中间用地平面隔离。电源路径优化:PVDD和AVCC采用星形接地,避免地回路干扰;DVDD电源引脚附近放置10μF钽电容和0.1μF陶瓷电容,形成低阻抗电源路径。输出走线控制:输出差分对走线长度差<50mil,阻抗控制在50Ω±10%,减少反射干扰。实测在CISPR25标准下,ACM8815的EMI辐射强度比传统方案低15dB,无需额外屏蔽即可通过汽车电子级EMC认证。至盛12S数字功放芯片3D声场拓展算法通过空间定位技术,让普通双声道设备实现环绕立体声沉浸体验。浙江自主可控至盛ACM8623

至盛 ACM 芯片对蓝牙音响音质的提升起到了关键作用。从音频信号的接收开始,芯片凭借其强大的蓝牙接收模块,能够稳定、快速地接收来自音源设备的音频信号,减少信号丢失与干扰,为高质量音频传输奠定基础。在音频解码阶段,芯片先进的解码算法与对多种音频格式的支持,能够准确还原音频文件中的每一个细节,使声音更加真实、饱满。功率放大模块则为扬声器提供了合适的驱动功率,确保扬声器能够充分发挥性能,展现出清晰、洪亮的声音。通过对音质提升的多方位把控,至盛 ACM 芯片能够让用户在使用蓝牙音响时,仿佛置身于音乐会现场,享受到身临其境的音乐体验,极大地提升了蓝牙音响的音质水平,满足了用户对品质高的音乐的追求。浙江自主可控至盛ACM8623至盛12S数字功放芯片芯片采用新型PWM脉宽调制架构,静态功耗降低30%,工作温度下降15℃。

至盛 ACM 芯片在不同市场领域展现出了明显的竞争优势。在中高级蓝牙音响市场,其凭借优良的音频处理性能、强大的蓝牙连接稳定性以及丰富的音效增强技术,满足了追求品质高的音乐体验用户的需求,与国际有名品牌芯片展开有力竞争。在便携式蓝牙音响市场,芯片的低功耗设计、高集成度以及小巧的尺寸,使得产品能够实现更长的续航时间、更轻便的外观设计,深受消费者喜爱,在该细分市场占据一席之地。而在新兴的智能蓝牙音响市场,芯片前列的智能语音交互功能,能够快速响应市场对智能化产品的需求,为制造商提供了具有竞争力的解决方案,助力其在市场竞争中脱颖而出,通过在不同市场发挥独特优势,至盛 ACM 芯片不断扩大市场份额,提升品牌影响力。
展望未来,至盛 ACM 芯片将紧跟行业发展趋势,不断进行技术创新与升级。在性能方面,持续提升蓝牙连接的稳定性与传输速率,支持更高的品质音频格式的解码,如 MQA 等,为用户带来较好的音质享受。在功耗控制上,通过采用更先进的制程工艺与节能技术,进一步降低芯片功耗,延长设备续航时间。智能化程度将进一步加深,智能语音交互功能将更加自然、流畅,能够理解用户的语义语境,实现更人性化的交互体验。同时,芯片还将积极融入新兴技术,如与物联网技术深度融合,实现与更多智能设备的互联互通;探索人工智能算法在音频处理中的更多应用,如个性化音频推荐、自适应音效调节等,不断拓展芯片的应用边界,为蓝牙音响市场的发展注入新的活力。ACM8623的供电电压范围在4.5V至15.5V之间,数字电源为3.3V,能够适应不同的电源环境。

相较于部分国际有名品牌音频芯片,至盛 ACM 芯片在性价比方面优势明显。在音频处理性能上,如对高保真音频处理能力、音效算法丰富度等方面,与同类高级芯片相当,能提供清晰、饱满、富有层次感的音频输出。在功耗控制方面,通过新型架构与算法优化,ACM 芯片在保证音质前提下,有效降低功耗,优于部分传统芯片,可延长设备续航时间。在价格上,至盛凭借自身研发实力与成本控制能力,为市场提供更具价格竞争力的产品,让消费者以更低成本获得高性能音频体验,尤其在中低端音频设备市场,至盛 ACM 芯片市场份额逐步扩大。舞台演出音响设备搭载ACM8623,其高功率与动态范围控制功能,确保现场音乐层次分明、震撼有力。浙江自主可控至盛ACM8623
至盛12S数字功放芯片内置自举电路设计,省去外部升压二极管,BOM成本降低15%。浙江自主可控至盛ACM8623
ACM8815通过三大创新实现无散热器设计:GaN材料低热阻:芯片采用Flip-Chip封装,GaN裸片直接焊接在PCB铜基板上,热阻(RθJA)*10℃/W(传统硅基D类功放热阻>40℃/W)。在200W输出时,芯片结温升高*20℃(假设环境温度25℃,PCB铜箔面积≥1000mm²)。动态功率分配:DSP引擎实时监测输入信号功率,当信号功率低于50W时,自动切换至“低功耗模式”,关闭部分H桥MOSFET以减少静态损耗。热仿真优化:通过ANSYS Icepak软件对芯片进行三维热仿真,发现热量主要集中于GaN裸片区域。优化方案包括:在PCB对应位置铺设2oz铜箔,增加导热孔密度(每平方毫米2个),以及在芯片下方使用导热系数>3W/m·K的导热胶。实测在25℃环境温度下,200W连续输出1小时后,芯片结温稳定在110℃(远低于150℃结温极限)。浙江自主可控至盛ACM8623