基于光刻工艺的微纳加工技术主要包含以下过程:掩模(mask)制备、图形形成及转移(涂胶、曝光、显影)、薄膜沉积、刻蚀、外延生长、氧化和掺杂等。在基片表面涂覆一层某种光敏介质的薄膜(抗蚀胶),曝光系统把掩模板的图形投射在(抗蚀胶)薄膜上,光(光子)的曝光过程是通过光化学作用使抗蚀胶发生光化学作用,形成微细图形的潜像,再通过显影过程使剩余的抗蚀胶层转变成具有微细图形的窗口,后续基于抗蚀胶图案进行镀膜、刻蚀等可进一步制作所需微纳结构或器件。刻胶显影完成后,图形就基本确定,不过还需要使光刻胶的性质更为稳定。湖南Si材料刻蚀

随着光刻对准技术的发展,一开始只是作为评价及测试光栅质量的莫尔条纹技术在光刻对准中的应用也得到了更深层的开发。起初,其只能实现较低精度的人工对准,但随着细光栅衍射理论的发展,利用莫尔条纹相关特性渐渐也可以在诸如纳米压印光刻对准等高精度对准领域得到应用。莫尔条纹是两条光栅或其他两个物体之间,当它们以一定的角度和频率运动时,会产生干涉条纹图案。当人眼无法看到实际物体而只能看到干涉花纹时,这种光学现象就是莫尔条纹。L.Rayleigh对这个现象做出了解释,两个重叠的平行光栅会生成一系列与光栅质量有关的低频条纹,他的理论指出当两个周期相等的光栅栅线以一定夹角平行放置时,就会产生莫尔条纹,而周期不相等的两个光栅栅线夹角为零(栅线也保持平行)平行放置时,也会产生相对于光栅周期放大的条纹。湖南Si材料刻蚀光刻工艺中的温度控制对结果有明显影响。

从对准信号上分,主要包括标记的显微图像对准、基于光强信息的对准和基于相位信息对准。对准法则是光刻只是把掩膜版上的Y轴与晶园上的平边成90º,如图所示。接下来的掩膜版都用对准标记与上一层带有图形的掩膜对准。对准标记是一个特殊的图形,分布在每个芯片图形的边缘。经过光刻工艺对准标记就永远留在芯片表面,同时作为下一次对准使用。对准方法包括:a、预对准,通过硅片上的notch或者flat进行激光自动对准b、通过对准标志,位于切割槽上。另外层间对准,即套刻精度,保证图形与硅片上已经存在的图形之间的对准。
湿法腐蚀是利用腐蚀液和基片之间的化学反应。采用这种方法,虽然各向异性刻蚀并非不可能,但比各向同性刻蚀要困难得多。溶液和材料的组合有很多限制,必须严格控制基板温度、溶液浓度、添加量等条件。无论条件调整得多么精细,湿法蚀刻都难以实现1μm以下的精细加工。其原因之一是需要控制侧面蚀刻。侧蚀是一种也称为底切的现象。即使希望通过湿式蚀刻在垂直方向(深度方向)溶解材料,也不可能完全防止溶液腐蚀侧面,因此材料在平行方向的溶解将不可避免地进行。由于这种现象,湿蚀刻随机产生比目标宽度窄的部分。这样,在加工需要精密电流控制的产品时,再现性低,精度不可靠。自适应光刻技术可根据不同需求调整参数。

现有光刻主要利用的是光刻胶中光敏分子的单光子吸收效应所诱导的光化学反应。光敏分子吸收一个能量大于其比较低跃迁能级的光子,从基态跃迁到激发态,经过电子态之间的转移生成活性种,诱发光聚合、光分解等化学反应,使光刻胶溶解特性发生改变。光刻分辨率的物理极限与光源波长和光刻物镜数值孔径呈线性关系,提高光刻分辨率主要通过缩短光刻光源波长来实现。尽管使用的光刻光源波长从可见光(G线,436nm)缩短到紫外(Ⅰ线,365nm)、深紫外(KrF,248nm;ArF,193nm)甚至极紫外(EUV,13.5nm)波段,由于光学衍射极限的限制,其分辨率极限在半个波长左右。目前,光刻胶原料仍大量依赖进口。湖南Si材料刻蚀
光刻胶的粘度决定了光刻胶的厚度范围。湖南Si材料刻蚀
在匀胶工艺中,转速的快慢和控制精度直接关系到旋涂层的厚度控制和膜层均匀性。匀胶机的转速精度是一项重要的指标。用来吸片的真空泵一般选择无油泵,上配有压力表,同时现在很多匀胶机有互锁,未检测的真空将不会启动。有时会出现胶液进入真空管道的现象,有的匀胶机厂商会在某一段管路加一段"U型"管路,降低异物进入真空管道的影响。光刻胶主要应用于半导体、显示面板与印制电路板等三大领域。其中,半导体光刻胶技术难度高,主要被美日企业垄断。据相关研究机构数据显示,全球光刻胶市场中,LCD光刻胶、PCB光刻胶、半导体光刻胶产品占比较为平均。相比之下,中国光刻胶生产能力主要集中PCB光刻胶,占比高达约94%;半导体光刻胶由于技术壁垒较高占约2%。此外,光刻胶是生产28nm、14nm乃至10nm以下制程的关键,被国外巨头垄断,国产化任重道远。湖南Si材料刻蚀