您好,欢迎访问

商机详情 -

山西载药超声微泡

来源: 发布时间:2024年11月04日

超声微泡的壳体类型的变化会影响所产生气泡的厚度、刚度和耐久性。除此之外,壳的厚度在气体**和外部介质之间起着屏障的作用,不同的材料会产生不同的壳厚度。含脂类的壳厚约为3nm,而基于蛋白质和聚合物的壳厚分别约在15 - 20nm和100 - 200nm之间。脂基超声微泡比聚合物基超声微泡更容易制备和修饰。脂基超声微泡常用的外壳材料包括二油基磷脂酰乙醇胺(DOPE)、1,2-二棕榈酰-sn-甘油-3-磷脂酰胆碱(DPPC)和1,2-二硬脂酰-sn-甘油-3-磷脂酰胆碱(dsc)。壳聚糖和白蛋白是聚合物基超声微泡和蛋白质基超声微泡中使用的材料的例子。聚乳酸-羟基乙酸(PLGA)由于其天然的生物可降解性,也是合成超声微泡的常用材料。微泡表面的加载也可以通过配体-受体相互作用来实现。山西载药超声微泡

山西载药超声微泡,超声微泡

超声微泡造影剂是一种先进的医疗技术,具有广泛的应用前景和巨大的市场潜力。作为一种非侵入性的检查方法,超声微泡造影剂在诊断和***方面具有独特的优势。首先,超声微泡造影剂具有高度安全性和可靠性。相比其他检查方法,如CT和MRI,超声微泡造影剂无需使用放射性物质,避免了患者暴露于辐射的风险。同时,超声微泡造影剂的成分经过严格筛选,确保了其在体内的稳定性和生物相容性,减少了不良反应的发生。其次,超声微泡造影剂具有高分辨率和高灵敏度。超声波能够穿透人体组织,通过对超声波的反射和散射信号进行分析,可以清晰地观察到血流动力学和组织结构的变化。山西载药超声微泡这些配体组合的微泡靶向成功地在动脉血管区域积累,但在对照组小鼠中却没有,尽管有高剪切流量。

山西载药超声微泡,超声微泡

超声微泡可以通过各种制造方法来制造,这些方法已经被引入和优化,以获得可复制的尺寸,生物相容性,生物降解性和高成像稳定性的回声特性。MNB的制造过程必须注重生物相容性和安全性,以免在体外和体内阶段测试时产生毒性。在制造阶段,涂层配方将决定寿命,对刺激(如超声波)的响应,并影响超声微泡的自组装尺寸。药物装载有几种策略,例如将药物和气体封装在**内,将药物同化到**和外壳之间的层中,以及利用静电相互作用。表面活性剂的加入,如Tween,可以维持超声微泡的稳定性,防止超声微泡携带的药物聚结。另一种药物装载方法是通过应用静电相互作用来帮助配体附着在超声微泡外壳或基因递送上。用超声微泡递送核酸也有助于延长其在血液中的循环时间,防止核酸的降解,并增强靶向药物递送的功效。为了获得如上所述的所需体系,可以使用一些技术来生产超声微泡,即超声、乳化、机械搅拌、激光烧蚀、喷墨和逐层法。

超声微泡造影剂的外壳是有脂质组成的,脂质壳比其他类型的壳(如聚合物)更不稳定,但它们更容易形成并产生更有回声的微泡。脂类是一大类化合物,由一个或多个碳氢化合物或碳氟化合物链共价连接到亲水性头基上,通常由甘油主链组成。脂质壳比其他类型的壳(如聚合物)更不稳定,但它们更容易形成并产生更有回声的微泡。脂质自发地从可溶性聚集体(即胶束和囊泡)吸附到气液界面,并自组装成单层涂层。在纳米尺度上,分子定向使得疏水尾部面向气相,并通过疏水和分散力相互作用,这可以通过增加或减少链长来调节。低于主相转变温度的脂质形成高度凝聚的壳层。研究发现,增加链长可以降低壳的表面张力,增加表面粘度,气体渗透阻力和屈曲稳定性,从而产生更强健的微气泡。**近的发现已经改变了关于脂质壳结构的主流范式;现在人们认识到它是一个复杂的多相结构。Kim等人的开创性工作表明,脂质壳由由缺陷(晶界)分隔的平面微畴(晶粒)组成,这影响了力学性能。Borden等人的研究还表明,晶界区域是一个**的、更不稳定的相,富含某些单层成分,如脂聚合物,而微畴主要由卵磷脂组成。这两种相都是稳定微泡所必需的。通过超声微泡诱导空化可以改变血管和细胞膜的通透性。

山西载药超声微泡,超声微泡

***的诊断是在选择合适的***方法之前确定和分析疾病部位的初始阶段以及区分各种类型的病理病变,特别是***性疾病。诊断通常在成像技术的帮助下实现,成像技术使研究人员能够更好地了解和可视化***斑块及其进展。然而,成像方法有时无法准确分析易损斑块,因此研究人员使用特异性靶向超声微泡开发心肌梗死。有几种靶向***的分子靶标,包括细胞间粘附分子(ICAM-1)、血管细胞粘附分子1 (VCAM-1)、选择素、氧化脂质、薄纤维帽和血管平滑肌细胞(VSMCs)。例如,p -选择素在几种心血管疾病和损伤的血管内皮中表达,CD81是***斑块形成的初始阶段标志物。除了常见的靶点外,还有许多***的分子靶点,目前仍很少被使用和探索。这些分子靶点可用于增强超声微泡的主动靶向传递,扩大***诊断和***的可能性。为了获得成功的MNB靶向,需要进行表面修饰以附着特定的配体或抗体。针对心肌梗死的靶向超声微泡必须基于受体与配体之间的强亲和力,通过鼻内注射和超声应用,可以在计算机屏幕上清楚地观察到生成的图像。纳米微泡比超声微泡具有更好的被动瞄准能力。山西载药超声微泡

过程是利用MNB造影剂与超声联合产生空化效应,以破坏纤维蛋白网。山西载药超声微泡

    递送***水平的药物或***性基因递送尚未证明静脉注射与临床相关浓度的微泡。大鼠心脏基因转染使用1毫升静脉注射超声造影剂,浓度约为1×109微泡/ml。将***性基因有效递送到大鼠胰腺的方法是,在外壳内注射1毫升含有该基因的微泡,注射浓度为5×109微泡/ml。这些研究使用的剂量远远大于推荐用于人体成像的剂量。能够通过小剂量静脉注射微泡成功转染的微泡剂的开发对未来的转化非常重要研究。然而,目前尚不清楚,是由于微泡的有效载荷能力较低而需要高浓度,还是超声波应用时需要高浓度的气泡。或者,可以考虑在肌肉或动脉内注射高浓度微泡以实现局部药物或基因递送的介入性技术。在小型临床前研究中,肌内注射微泡和质粒可产生一致的局部转染。将质粒DNA和微泡共同注入肾动脉,结合瞬时血管压迫和超声,已被证明可在肾脏中产生局部基因表达。将质粒DNA和微泡共同注射到脑脊液中,再加上超声波,产生了DNA转移到大鼠***系统。Tsunoda等人表明,与通过尾静脉注射相比,向左心室局部注射微泡和质粒DNA后,报告基因转染到心脏的数量增加了一个数量级。 山西载药超声微泡

标签: 超声微泡