手持式光谱仪是一种灵活、便携的光谱分析工具,广泛应用于光特性的检测与分析。它们根据多样化的应用场景和技术要求,设计有多种型号和规格,以满足不同用户的需求。以下是一些广泛应用的手持式光谱仪类型:可见光手持式光谱仪:专为可见光谱域设计,这种光谱仪覆盖了400至700纳米的波长范围,适用于对色彩和可见光特性的精确分析。近红外手持式光谱仪:扩展至近红外区域,这种设备通常分析700至2500纳米的波长,适用于材料的化学成分和结构分析。紫外-可见光手持式光谱仪:提供更宽的光谱覆盖,从200至800纳米,这种光谱仪能够同时分析紫外和可见光区域,适用于研究光化学效应和材料的光学特性。远红外手持式光谱仪:覆盖2500至15000纳米的远红外区域,适合于分析物质的热特性和分子结构。光谱仪可以用于定量分析,通过校准曲线法或标准加入法,可以精确测量样品中特定成分的浓度。安徽中阶梯光栅光谱仪费用

光谱仪有多种类型,除在可见光波段使用的光谱仪外,还有红外光谱仪和紫外光谱仪。按色散元件的不同可分为棱镜光谱仪、光栅光谱仪和干涉光谱仪等。按探测方法分,有直接用眼观察的分光镜,用感光片记录的摄谱仪,以及用光电或热电元件探测光谱的分光光度计等。单色仪是通过狭缝只输出单色谱线的光谱仪器,常与其他分析仪器配合使用。一台典型的光谱仪主要由一个光学平台和一个检测系统组成。包括以下几个主要部分:01入射狭缝:在入射光的照射下形成光谱仪成像系统的物点。02准直元件:使狭缝发出的光线变为平行光。该准直元件可以是一单独的透镜、反射镜、或直接集成在色散元件上,如凹面光栅光谱仪中的凹面光栅。03色散元件:通常采用光栅,使光信号在空间上按波长分散成为多条光束。04聚焦元件:聚焦色散后的光束,使其在焦平面上形成一系列入射狭缝的像,其中每一像点对应于一特定波长。05探测器阵列:放置于焦平面,用于测量各波长像点的光强度。该探测器阵列可以是CCD阵列或其它种类的光探测器阵列。安徽中阶梯光栅光谱仪费用光谱仪广泛应用于半导体制造、材料分析、环境监测、科研等领域。其产品在半导体蚀刻检测等方面表现出色。

傅里叶变换红外光谱仪(FTIR)能够通过检测蛋白质分子中不同化学键的伸缩和弯曲振动来确定蛋白质的二级结构。蛋白质的二级结构包括α-螺旋、β-折叠、β-转角和无规则卷曲等,这些结构通过氢键连接盘旋形成。FTIR通过分析酰胺I带(1600-1700 cm^-1)的特征吸收峰来研究蛋白质的二级结构,因为这个区域的吸收峰与蛋白质的二级结构密切相关。通过带曲线拟合和二阶导数等数学程序可以解析重叠的酰胺I带成分,并量化蛋白质的二级结构。FTIR也可以用来研究蛋白质在不同条件下(如温度、pH值、金属离子、药物分子等)的构象变化。这些变化可以通过FTIR光谱中的特征吸收峰的变化来监测,从而帮助理解蛋白质的功能和生物学意义。
光谱仪是一种精密的科学仪器,专门设计用于分析光的组成,通过将光分解成不同波长的光谱进行细致测量。其原理基于光的色散特性,将复合光分解为一系列单色光,并通过测量各单色光的强度来获取详尽的光谱数据。光谱仪的主要组成部分包括:光源:可以是白光源,提供连续光谱,或单色光源,提供特定波长的光。样品:可以是气体、液体或固体,每种状态的样品都能提供不同的光谱信息。色散元件:如棱镜或光栅,负责将光束按波长分散,是光谱分析的关键。光探测器:如光电二极管或光电倍增管,用于精确测量各波长光的强度。光谱仪的应用范围极广,覆盖了物理、化学、生物、地质等多个学科的研究和实验。它使我们能够深入探究物质的光谱特性,从而了解其组成、结构和性质。在化学分析中,光谱仪被用于执行定量分析、质谱分析和红外光谱分析等任务。在天文学领域,它帮助科学家研究星体的组成和运动状态,揭示宇宙的奥秘。总而言之,光谱仪是现代科学研究中不可或缺的工具,它通过光谱分析为我们提供了洞察物质世界的重要窗口。Ocean ST 微型光纤光谱仪以其超小体积、高性能和灵活配置,为用户提供了一个高性价比的光谱分析解决方案。

光谱仪的光源是其分析能力的基石,有多种类型可供选择,每种都具有独特的特性和应用领域:白炽灯:提供连续的光谱,包含从可见光到红外的波长。尽管其光谱分布并不完全均匀,且含有较多的红外和紫外成分,但通过滤波技术,白炽灯仍可用于多种光谱分析。氙灯:氙灯作为一种气体放电灯,以其连续且宽广的光谱覆盖范围而著称。其光谱分布相对均匀,特别适合于需要全波长覆盖的应用,例如荧光光谱分析。汞灯:汞灯同样是一种气体放电灯,其产生的光谱具有明显的离散谱线,主要集中在紫外和可见光区域。这些特征使得汞灯非常适合于需要特定波长激发的应用,如荧光标记和光谱校准。激光器:激光器以其产生的高聚焦、单色、相干光而闻名。不同类型的激光器能够提供不同波长的光线,例如氦氖激光器、二氧化碳激光器等。激光器的光谱线宽非常窄,这使得它们非常适合于高分辨率光谱分析和精密测量。这些光源的选择取决于分析任务的具体需求,包括所需的光谱范围、分辨率和测量的精确度。通过精心选择和应用这些光源,光谱仪能够在化学分析、材料科学、生物医学研究等领域发挥关键作用。红外光谱仪:用于监测高分子材料在老化过程中的化学变化,帮助研究人员评估材料的老化程度。安徽中阶梯光栅光谱仪费用
光谱仪在材料科学中具有应用,从定,再到析到结构鉴能研究和老化监测,为材料科学的研究和工业提供了支持。安徽中阶梯光栅光谱仪费用
近红外光谱仪(NIR)在食品安全检测领域扮演着至关重要的角色。以下是其应用的几个关键领域:成分分析:NIR技术能够精确分析食品中的营养成分,包括水分、脂肪、蛋白质等,通过构建成分与光谱特征之间的关联模型,实现食品成分含量的快速准确测定。质量控制:NIR在食品质量检测中大显身手,能够评估食品的多项质量指标,如酸度、pH值、色泽和纹理等。通过与标准样品光谱的对比分析,确保食品质量满足既定标准。真伪鉴别:NIR技术在识别食品真伪方面具有明显优势,尤其适用于酒类、橄榄油、奶粉等产品的真伪检测。通过光谱特征的比对,有效辨别食品的真伪。污染物检测:NIR技术能够检测食品中的污染物,包括农药残留和重金属等。通过建立污染物与光谱特征的关联模型,实现对食品污染物含量的快速精确检测。品质评估:NIR技术在食品品质评估方面同样发挥着重要作用,如评估咖啡的香气、葡萄酒的口感等。通过对样品光谱特征的分析,可以准确判断食品的品质等级。安徽中阶梯光栅光谱仪费用