量角器---画图用具,常见材质为塑料或铁质,可以根据需要画出所要的角度。常与圆规一起使用功能可以画角度、量角度、画垂直线、平行线、测倾斜度、垂直度、水平度,可以当内外直角拐尺,打开、合拢,可当长短直尺还能较确直观读出,并画出规定尺寸的圆寸量角器制造材料来源广,成本低,结构简单,便于制造,实用性强,应用市场量大,对接产方有极大的投资效益。为弥补量角器在使用上的单一性及携带和保管上的使用不方便,普遍采用一器多用的方式,使量角器具有灵活性和***性实用价值,结构简单,造型新颖独特,设计合理,从而提高工作效率,又体现了社会效益。数学教学教具能够激发学生的创造力和想象力。巴中数学教学教具供应商
四则运算的意义和计数方法加法意义、减法意义、乘法意义、除法意义、加法、减法、除法、乘法、验算运算定律与简便方法、四则混合运算加法交换律(a+b=b+a)、加法结合律(a+(b+c)=(a+b)+c)、乘法交换律(a*b=b*a)、乘法结合律(a*(b*c)=(a*b)*c)、乘法分配律(a*(b+c)=a*b+a*c)、连减的性质(a-b-c=a-(b+c))、商不变的性质减法运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c运算分级:加法和减法叫做一级运算;乘法和除法叫做二级运算(简略)复合应用题巴中数学教学教具供应商数学教学教具的趣味性让学生爱上数学学习。
数学教具的特点:
数学教具通常具有直观性,它们可以将抽象的数学概念具体化,方便学生理解和掌握。例如,几何体可以帮助学生理解三维空间的概念,角度器则可以让学生直观地感受角的大小。
数学教具的另一个特点是操作性。通过亲手操作教具,学生可以更加深入地理解数学知识的内在联系。例如,在拼图游戏中,学生需要通过不断的尝试和调整来找到合适的组合方式,这个过程可以锻炼他们的逻辑思维和空间想象能力。
数学教具往往具有一定的趣味性,它们可以激发学生的学习兴趣和动力。例如,积木游戏可以让学生在搭建的过程中感受到数学的魅力,从而培养他们对数学的兴趣和爱好。
利用直观教学,培养学生学习数学的兴趣及良好的学习习惯。
数学比较抽象这就容易使学生感到枯燥乏味,而利用一些直观的教具和具体事例来教学就可以避免这种单调的学习方法使学生积极主动学习而且能培养学生良好的学习习惯。例如在学习平面几何时需要添加辅助线来证明一些命题或结论。如果能利用教具演示或用图形软件来演示就能激发学生学习兴趣也能培养学生认真审题和分析问题的能力。如果学生能认真学习并逐步养成习惯那么对于提高教学质量和学习成绩是大有裨益的。 数学教学教具在培养学生数学素养方面发挥着重要作用。
实物教具:几何模型:几何模型是用来展示几何图形的教具,如立体模型、平面模型等。它们可以帮助学生更好地理解几何概念和性质。计算器:计算器是用来进行数学计算的工具。它们可以帮助学生进行复杂的计算,提高计算效率。尺子和量角器:尺子和量角器是用来测量长度和角度的工具。它们可以帮助学生进行准确的测量和绘图。数学教学教具的分类类型多种多样,每种教具都有其独特的优势和应用场景。教师应根据教学目标和学生的特点选择合适的教具,以提高数学教学的效果和学生的学习兴趣。数学教学教具使复杂的数学问题简单化。巴中数学教学教具供应商
数学教学教具可以促进学生的数学思维发展。巴中数学教学教具供应商
由于学生的生活阅历较少,观察事物还不够全,往往只看到局部而忽略整体或者是只能看到静态而忽略动态。例如:在讲“点的轨迹”时学生不易理解轨迹的形成。如果在讲这部分时能利用直观的教具进行演示,学生就容易理解。如:在黑板上固定一点(用图钉),让一根线段绕着这个点旋转一周,并把每次旋转的情形用彩笔画在黑板上。这样线段扫过的图形(即轨迹)就是圆。从而使学生理解了轨迹的形成过程也加深了对圆的认识。再如:在学习三角形全等的判定方法时“边角边”这一判定方法学生不易理解。如果用教具演示:拿一个刻度尺和一个量角器让学生画一个三角形并验证其全等。首先让学生明白全等三角形的对应边和对应角是相等的。然后再让学生用量角器和刻度尺去画三角形验证其全等。这样学生就容易理解“边角边”这一判定方法了。巴中数学教学教具供应商