您好,欢迎访问

商机详情 -

深圳电子类语音识别哪里买

来源: 发布时间:2023年11月17日

    自2015年以来,谷歌、亚马逊、百度等公司陆续开始了对CTC模型的研发和使用,并且都获得了不错的性能提升。2014年,基于Attention(注意力机制)的端到端技术在机器翻译领域中得到了广的应用并取得了较好的实验结果,之后很快被大规模商用。于是,JanChorowski在2015年将Attention的应用扩展到了语音识别领域,结果大放异彩。在近的两年里,有一种称为Seq2Seq(SequencetoSequence)的基于Attention的语音识别模型在学术界引起了极大的关注,相关的研究取得了较大的进展。在加拿大召开的国际智能语音领域的会议ICASSP2018上,谷歌公司发表的研究成果显示,在英语语音识别任务上,基于Attention的Seq2Seq模型表现强劲,它的识别结果已经超越了其他语音识别模型。但Attention模型的对齐关系没有先后顺序的限制,完全靠数据驱动得到,对齐的盲目性会导致训练和解码时间过长。而CTC的前向后向算法可以引导输出序列与输入序列按时间顺序对齐。因此CTC和Attention模型各有优势,可把两者结合起来。构建HybridCTC/Attention模型,并采用多任务学习,以取得更好的效果。2017年,Google和多伦多大学提出一种称为Transformer的全新架构,这种架构在Decoder和Encoder中均采用Attention机制。语音识别是项融多学科知识的前沿技术,覆盖数学与统计学、声学与语言学、计算机与人工智能等基础前沿学科。深圳电子类语音识别哪里买

深圳电子类语音识别哪里买,语音识别

    汉语的音节由声母、韵母和音调构成,其中音调信息包含在韵母中。所以,汉语音节结构可以简化为:声母+韵母。汉语中有409个无调音节,约1300个有调音节。汉字与汉语音节并不是一一对应的。一个汉字可以对应多个音节,一个音节可对应多个汉字,例如:和——héhèhuóhuòhútián——填甜语音识别过程是个复杂的过程,但其终任务归结为,找到对应观察值序列O的可能的词序列W^。按贝叶斯准则转化为:其中,P(O)与P(W)没有关系,可认为是常量,因此P(W|O)的*大值可转换为P(O|W)和P(W)两项乘积的*大值,di一项P(O|W)由声学模型决定,第二项P(W)由语言模型决定。为了让机器识别语音,首先提取声学特征,然后通过解码器得到状态序列,并转换为对应的识别单元。一般是通过词典将音素序列(如普通话的声母和韵母),转换为词序列,然后用语言模型规整约束,后得到句子识别结果。例如,对"天气很好"进行词序列、音素序列、状态序列的分解,并和观察值序列对应。其中每个音素对应一个HMM,并且其发射状态(深色)对应多帧观察值。人的发音包含双重随机过程,即说什么不确定。怎么说也不确定,很难用简单的模板匹配技术来识别。更合适的方法是用HMM这种统计模型来刻画双重随机过程。深圳电子类语音识别哪里买在安静环境、标准口音、常见词汇场景下的语音识别率已经超过 95%。

深圳电子类语音识别哪里买,语音识别

    LSTM)的循环神经网络RNN,能够通过遗忘门和输出门忘记部分信息来解决梯度消失的问题。由LSTM也衍生出了许多变体,较为常用的是门控循环单元(GatedRecurrentUnit,GRU),在训练数据很大的情况下GRU相比LSTM参数更少,因此更容易收敛,从而能节省很多时间。LSTM及其变体使得识别效果再次得到提升,尤其是在近场的语音识别任务上达到了可以满足人们日常生活的标准。另外,时延神经网络(TimeDelayNeuralNetwork,TDNN)也获得了不错的识别效果,它可以适应语音的动态时域变化,能够学习到特征之间的时序依赖。深度学习技术在近十几年中,一直保持着飞速发展的状态,它也推动语音识别技术不断取得突破。尤其是近几年,基于端到端的语音识别方案逐渐成了行业中的关注重点,CTC(ConnectionistTemporalClassification)算法就是其中一个较为经典的算法。在LSTM-CTC的框架中,后一层往往会连接一个CTC模型,用它来替换HMM。CTC的作用是将Softmax层的输出向量直接输出成序列标签,这样就实现了输入语音和输出结果的直接映射,也实现了对整个语音的序列建模。2012年,Graves等人又提出了循环神经网络变换器RNNTransducer,它是CTC的一个扩展,能够整合声学模型与语言模型,同时进行优化。

    业界大部分都是按照静态解码的方式进行,即将声学模型和语言模型构造成WFST网络,该网络包含了所有可能路径,解码就是在该空间进行搜索的过程。由于该理论相对成熟,更多的是工程优化的问题,所以不论是学术还是产业目前关注的较少。语音识别的技术趋势语音识别主要趋于远场化和融合化的方向发展,但在远场可靠性还有很多难点没有突破,比如多轮交互、多人噪杂等场景还有待突破,还有需求较为迫切的人声分离等技术。新的技术应该彻底解决这些问题,让机器听觉远超人类的感知能力。这不能只是算法的进步,需要整个产业链的共同技术升级,包括更为先进的传感器和算力更强的芯片。单从远场语音识别技术来看,仍然存在很多挑战,包括:(1)回声消除技术。由于喇叭非线性失真的存在,单纯依靠信号处理手段很难将回声消除干净,这也阻碍了语音交互系统的推广,现有的基于深度学习的回声消除技术都没有考虑相位信息,直接求取的是各个频带上的增益,能否利用深度学习将非线性失真进行拟合,同时结合信号处理手段可能是一个好的方向。(2)噪声下的语音识别仍有待突破。信号处理擅长处理线性问题,深度学习擅长处理非线性问题,而实际问题一定是线性和非线性的叠加。语音命令可用于发起电话呼叫、选择无线电台或从兼容的智能手机、MP3播放器或音乐加载闪存驱动器播放音乐。

深圳电子类语音识别哪里买,语音识别

    但依然流畅、准确。整体使用下来,直观感受是在语音输入的大前提下、结合了谷歌翻译等类似的翻译软件,实时翻译、准翻译。在这两种模式下,完成输入后,同样可以像普通话模式一样,轻点VOICEM380语音识别键,对内容进行终的整合调整。同样,准确度相当ok。我挑战了一下,普通话模式在输入长度上的极限。快速读了一段文字,单次普通话模式的输入极限是一分零三秒、316个字符。时长上完全实现了官方的宣传,字符长度上,目测是因为个人语速不够,而受到了限制。类似的,我测试了一下,VOICEM380语音识别功能在距离上的极限。在相同语速、相同音量下,打开语音识别功能,不断后退,在声源与电脑中间不存在障碍的情况下,方圆三米的距离是完全不会影响这个功能实现的。由此可以看到,在一个小型会议室,罗技VOICEM380的语音识别功能,是完全可以很好的辅助会议记录的。有关M380语音识别功能三大模式之间的转换,也是非常便捷。单击VOICEM380语音识别键,如出现的一模式并非我们所需要的模式,只需轻轻双击VOICEM380语音识别键,即可瞬间切换至下一模式;再次启动输入功能时,会自动优先弹出上次结束的功能。有关M380后要强调的一点,便是它的离在线融合模式。损失函数通常是Levenshtein距离,对于特定的任务它的数值是不同的。深圳电子类语音识别哪里买

语音识别的狭义语音识别必须走向广义语音识别,致力让机器听懂人类语言,才能将语音识别研究带到更高维度。深圳电子类语音识别哪里买

    没有任何一个公司可以全线打造所有的产品。语音识别的产业趋势当语音产业需求四处开花的同时,行业的发展速度反过来会受限于平台服务商的供给能力。跳出具体案例来看,行业下一步发展的本质逻辑是:在具体每个点的投入产出是否达到一个普遍接受的界限。离这个界限越近,行业就越会接近滚雪球式发展的临界点,否则整体增速就会相对平缓。不管是家居、金融、教育或者其他场景,如果解决问题都是非常高投入并且长周期的事情,那对此承担成本的一方就会犹豫,这相当于试错成本过高。如果投入后,没有可感知的新体验或者销量促进,那对此承担成本的一方也会犹豫,显然这会影响值不值得上的判断。而这两个事情,归根结底都必须由平台方解决,产品方或者解决方案方对此无能为力,这是由智能语音交互的基础技术特征所决定。从技术来看,整个语音交互链条有五项单点技术:唤醒、麦克风阵列、语音识别、自然语言处理、语音合成,其它技术点比如声纹识别、哭声检测等数十项技术通用性略弱,但分别出现在不同的场景下,并会在特定场景下成为关键。看起来关联的技术已经相对庞杂,但切换到商业视角我们就会发现,找到这些技术距离打造一款体验上佳的产品仍然有绝大距离。深圳电子类语音识别哪里买