您好,欢迎访问

商机详情 -

甘肃光纤数据语音服务供应

来源: 发布时间:2023年10月17日

    开通电话语音服务的企业可以使用SIP话机来承接电话的呼入和呼出服务,使用SIP话机可以提升电话语音通话质量。网络带宽要求您可以对比来考虑如何为电话语音服务构建网络环境。建议使用光纤网络,下面的承载客服数量是指在当前网络带宽情况下客服数量的配比网络带宽多可承载的电话语音客服数量4M15-2010M30-5050M150-200100M300-500SIP话机您需要购买SIP话机后以使用电话语音的SIP模式服务,如何配置SIP话机及服务将菜单转到系统设置>电话语音呼叫中心,点击基本设置选项卡,在打开的页面中的电话语音接听模式的选项中,选择SIP话机模式:然后点击SIP信息选项卡可以查看当前平台所有客服坐席的SIP账号和密码信息请在列表里找到您要配置SIP话机的客服,并记录其SIP账号和SIP密码,这将在后面配置SIP话机时用到。请将您的本地网络网线插入SIP话机的LAN接口,接通电源。操作面板:选择菜单选项点击状态选项,出现如下信息请记录下WAN口IP的IP地址信息,请在您的浏览器中输入以上IP地址并访问,在浏览器中会出现SIP话机登录页面,输入初始用户名和密码:admin/admin登录,选择“VOIP”或者“线路”或者打开SIP话机配置界面基本设置>>。在带有于训练的硬件的区域中,语音服务将使用多20小时的音频进行训练。甘肃光纤数据语音服务供应

甘肃光纤数据语音服务供应,语音服务

    进一步地,可以基于所获取的各个用户物联网受控设备信息集,确定与设备用户信息相对应的多个物联网受控设备信息。这里,在确定设备列表时,需要针对酒店a下的各个物联网主控设备分别进行操作,例如针对酒店a中各个房间内的主控音箱进行操作。并且,针对设备用户信息下的各个物联网主控设备可以进行如步骤420-步骤440的操作。在步骤420中,获取关于该物联网主控设备的区域配置请求,区域配置请求包括设备区域配置信息。示例性地,语音服务端接收到针对酒店a的其中一个主控音箱(例如,位于房间301的音箱)的区域配置请求,这个区域配置请求中包括设备区域配置信息“房间301”。在步骤430中,获取针对多个物联网受控设备信息中的至少一者的选择指令。示例性地,酒店管理人员可以对酒店a所对应的各个物联网受控设备信息针对“房间301”(即,区域配置信息)进行选择。在步骤440中,确定所选择的至少一个设备区域配置信息与区域配置请求中的设备区域配置信息是相对应的。示例性地,可以将酒店a下的各个物联网受控设备(例如,灯具、窗帘等)和主控设备针对设备区域配置信息进行配置。在步骤450中,基于各个物联网受控设备信息所对应的设备区域配置信息。甘肃光纤数据语音服务供应语音服务的主要功能之一是能够识别并转录人类语音(通常称为语音转文本)。

甘肃光纤数据语音服务供应,语音服务

    马尔可夫链的每一个状态上都增加了不确定性或者统计分布使得HMM成为了一种双随机过程。HMM的一个时间演变结构所示。隐马尔可夫模型HMM的主要内容包括参数特征、仿真方法、参数的极大似然估计、EM估计算法以及维特比状态解码算法等细节知识,本将作为简单综述这里不做详细的展开。基于深度学习的声学模型一提到神经网络和深度学习在语音识别领域的应用,可能我们的反应就是循环神经网络RNN模型以及长短期记忆网络LSTM等。实际上,在语音识别发展的前期,就有很多将神经网络应用于语音识别和声学模型的应用了。早用于声学建模的神经网络就是普通的深度神经网络(DNN),GMM等传统的声学模型存在音频信号表征的低效问题,但DNN可以在一定程度上解决这种低效表征。但在实际建模时,由于音频信号是时序连续信号,DNN则是需要固定大小的输入,所以早期使用DNN来搭建声学模型时需要一种能够处理语音信号长度变化的方法。一种将HMM模型与DNN模型结合起来的DNN-HMM混合系统颇具有效性。DNN-HMM框架,HMM用来描述语音信号的动态变化,DNN则是用来估计观察特征的概率。在给定声学观察特征的条件下。我们可以用DNN的每个输出节点来估计HMM某个状态的后验概率。

  

    非异构计算的工程优化随着深度学习技术的进步,模型的建模能力越来越强大,随之而来的计算量需求也越来越高。近年来,很多公司都采用异构计算进行模型的inference,例如采用高性能或者inferenceGPU,甚至采用FPGA/ASIC这样的芯片技术来加速inference部分的计算,服务实际需求。对语音合成而言,大量的需求是需要进行实时计算的。例如,在交互场景上,语音合成服务的响应时间直接影响到用户的体验,往往需要从发起合成请求到返回语音包的时间在200ms左右,即首包latency。另一方面,很多场景的语音合成的请求量的变化是非常大的,例如小说和新闻播报场景,白天和傍晚的请求量往往较高,而深夜的请求量往往很低,这又对部署的便捷性和服务的快速扩展性带来了要求。我们仔细对比了不同的inference方案,考虑到我们终的使用场景要求,对快速扩展的要求,甚至客户不同机器的部署能力,我们终选择以非异构计算的形式进行inference计算,即不采用任何异构计算的模块,包括GPU/FPGA/ASIC等。 集成了语音识别服务和其他服务(例如物联网控制或运营服务)的服务端。

甘肃光纤数据语音服务供应,语音服务

    后台终端再讲信息输送到信息处理模块中进行读取处理,随后进行反馈,此时使用者就与后台服务系统取得联系,可以进行相关操作了,后台终端反馈一系列的信息到使用者手机或者相关设备的处理器中,处理器将信息显示在输入/输出模块中的显示单元上,使用者通过显示器即可直观的连接菜单等信息,此时使用者根据菜单上显示的信息即可进行选项的选择,在进行打电话时,后台终端中的自助服务首先进行信息交互,自助服务按顺序播报菜单中的选项信息,若是使用者需要直接跳转所需选项或者没听清时,使用者直接说出所需选项名称或者没听清,语音单元中的麦克风接收语音信息,并通过输入/输出模块将语音信息输送到处理器中,后通过信息传递模块和服务器将信息传递到后台终端中,后台终端作出相应处理,并反馈所需信息,此时使用者即可直接听取所需信息了,在进行交互时,使用者还可以选择人工服务进行信息查询,若是繁忙时间接入人工服务,需要等待,这时系统,会弹出推荐的音乐选择或者小游戏供用户选择,使用者通过输入/输出模块进行选择,程序选择模块与指令转化模块将选择信息传递到处理器中,随后选中需要的选项,选择后只要后续人工接通,会自动为用户切换到人工服务。语音服务控制请求包括语音消息、目标设备用户信息和目标设备区域配置信息。甘肃光纤数据语音服务供应

操控单元,被配置为基于所述语音服务消息。甘肃光纤数据语音服务供应

    由于DNN-HMM训练成本不高而且相对较高的识别概率,所以即使是到现在在语音识别领域仍然是较为常用的声学模型。除了DNN之外,经常用于计算机视觉的CNN也可以拿来构建语音声学模型。当然,CNN也是经常会与其他模型结合使用。CNN用于声学模型方面主要包括TDNN、CNN-DNN框架、DFCNN、CNN-LSTM-DNN(CLDNN)框架、CNN-DNN-LSTM(CDL)框架、逐层语境扩展和注意CNN框架(LACE)等。这么多基于CNN的混合模型框架都在声学模型上取得了很多成果,这里小编挑两个进行简单阐述。TDNN是早基于CNN的语音识别方法,TDNN会沿频率轴和时间轴同时进行卷积,因此能够利用可变长度的语境信息。TDNN用于语音识别分为两种情况,第一种情况下:只有TDNN,很难用于大词汇量连续性语音识别(LVCSR),原因在于可变长度的表述(utterance)与可变长度的语境信息是两回事,在LVCSR中需要处理可变长度表述问题,而TDNN只能处理可变长度语境信息;第二种情况:TDNN-HMM混合模型,由于HMM能够处理可变长度表述问题,因而该模型能够有效地处理LVCSR问题。DFCNN的全称叫作全序列卷积神经网络(DeepFullyConvolutionalNeuralNetwork)。是由国内语音识别领域科大讯飞于2016年提出的一种语音识别框架。

    甘肃光纤数据语音服务供应