螺钉位于重叠部分正中间位置,参考实际工程中常用的钢板及螺钉规格,模拟压型钢板时选用的薄钢板厚度分别为,,mm,螺钉直径为,mm,模拟檩条构件时选用的厚钢板板厚度全部为mm。模型简化由于实体建模的复杂性,本文在建立有限元模型时进行如下简化[2]:1)将螺钉和垫圈作为一个实体而非两个相接触的实体进行分析。2)自攻螺钉的螺纹有很多圈,本文在实际建模中只考虑3道与钢板以及檩条相接触的螺纹,并且螺纹所在平面垂直于钉轴。表1自攻螺钉纯剪、纯拉时模型的承载力计算结果螺钉直径d/mm板厚t/mm抗剪极限承载力Vu/N模型破坏形式(纯剪)抗拉极限承载力Nu/N模型破坏形式(纯拉)31.03100螺钉变形过大2910螺钉变形过大3082620板孔变形过大2910螺钉变形过大3051810板孔变形过大2605板孔变形过大41.04890板孔变形过大5630板孔变形过大4083205板孔变形过大5105板孔变形过大4051915板孔变形过大3595板孔变形过大3)不考虑模型自重,不考虑自攻螺钉预紧力。单元的选取和网格划分网格的划分对分析的结果尤为重要,对于檩条、压型钢板和自攻螺钉均选用实体单元(Solid45)对其进行网格划分,详细网格划分见图1、图2。图1整体网格划分(正视)图2螺钉孔周边单元划分。 螺钉,就选浙江吉达金属有限公司,用户的信赖之选,欢迎您的来电!青海六角法兰面螺钉厂家直供
图1常见自攻螺钉图2自攻螺钉拧入塑料件安装孔后的联接状态二、常见自攻螺钉拧紧失效问题及分析塑料件安装孔开裂自攻拧紧过程中,塑料件安装孔所在的区域会受到挤压、摩擦和扭转等复杂作用,同时孔的圆周切线方向会产生拉应力。自攻拧紧过程中的安装孔开裂是一种常见的现生产质量问题,严重时会导致生产线停产。引起该问题的主要原因如下。安装孔的熔接痕强度低对注塑件上的安装孔(通常为圆柱状)而言,注塑模具内部必然存在赋予安装孔形状的型芯机构。在注塑过程中,熔融的塑料料流到达安装孔型芯时,料流会被分成两股,绕过型芯后再次汇合,从而形成走向基本平行于安装孔轴线的熔接痕。熔接痕处的强度通常为正常材料强度的20%~80%。如果模具结构不合理或注塑参数存在问题(如浇口过小、熔体温度过低等),便会导致熔接强度过低,在自攻螺钉旋入时,安装孔壁因受力而沿熔接痕开裂,这类开裂案例在塑料件拧紧失效中的比例是很高的。例如,某采用POM注塑的六角塑料螺母(图3)在采用N·m的拧紧力矩进行固定时,螺母一侧发生贯穿式开裂,见图3,浇口与熔接痕位置以安装孔为中心互呈180°。经分析,该螺母所用材料及尺寸均无问题。 青海六角法兰面螺钉厂家直供浙江吉达金属有限公司为您提供螺钉,欢迎新老客户来电!
安装孔径过大或自攻螺钉过细塑料件的安装孔内径过大或自攻螺钉过细时,在自攻螺钉旋入过程中,螺纹在安装孔内壁上侵入的深度过浅,使得螺纹表面和安装孔内壁之间的挤压作用和摩擦力过小,因而无法达到足够的拧紧力矩。安装孔壁内部存在疏松区域塑料件注塑时,因锁模力过低或保压压力低等原因,造成安装孔壁内部存在疏松区域,使安装孔刚性降低,在螺钉挤压作用下会发生较大变形,从而造成拧紧扭矩过低,无法达到规定的拧紧力矩,安装孔壁内部的疏松问题有时即使采用CT扫描也难以发现。例如,某塑料件采用ABS材料制造,生产线发现某一批次零件拧紧力矩偏低,*能达到N·m,而工艺要求为N·m。经分析发现该件的安装孔处于整个零件的料流末端,该处的材料密度*为~g/cm3,而远离安装孔的其它位置的材料密度则可以达到g/cm3,因而推断该件的安装孔壁内存在疏松区域,因而造成拧紧力矩过低。塑料件材料硬度偏低如果塑料件选用的材料硬度偏低,也会使自攻螺钉螺纹表面和安装孔内壁之间的挤压力和摩擦力过小,从而无法达到足够的拧紧力矩。例如某POM底座采用自攻螺钉拧紧方式固定,生产现场发现A供应商的零件拧紧无问题,而B供应商的零件在拧紧时100%发生打滑,见图11。
长度为3/4英寸。另外要表示美制螺丝的话一般会在表示英制螺丝的后面加上UNC以及UNF,以此来区别是美制粗牙或是美制细牙。螺钉历史编辑希腊数学家阿尔库塔斯曾经描述过螺钉,螺丝,螺丝钉的原理。在西元***世纪时,地中海世界已开始将木头螺钉,螺丝,螺丝钉用在螺旋压机中,可以由橄榄中压制橄榄油,也可以从葡萄中榨汁酿酒。在十五世纪之前,欧洲很少用金属螺钉,螺丝,螺丝钉作为紧固件。罗伯津斯基(Rybczynski)证明手持的螺钉旋具,螺丝起子在中古时期就已经存在(**晚为公元1580年),不过到了十八世纪才配合有螺纹紧固件的商业化,开始广为使用。在螺纹紧固件广为使用之前,有许多不同的紧固方式。多半和木工及锻造有关,和机械加工较无关,用到的概念像定缝销钉及销、楔形物、榫卯、楔形榫头、钉子、锻焊及其他用皮革或纤维打结后绑束起来。在十九世纪中之前,造船时会用开口销、销螺栓或是铆钉固定,当时也有黏合剂,但种类不像现代这里多。一直用十八世纪有机床可以大量生产螺钉,螺丝,螺丝钉后,金属螺钉,螺丝,螺丝钉才变成常用的紧固件,此技术约在1760年代及1770年代发展,沿着二个分开的工艺途径,但很快就融合了:木头螺钉,螺丝,螺丝钉。浙江吉达金属有限公司为您提供螺钉,有想法可以来我司咨询!
自攻螺钉的优势不体现在其广泛的应用领域上,更在于其不断创新和突破的精神。随着科技的进步和工业的发展,自攻螺钉的材质、工艺和设计都在不断地升级和完善。从初的普通碳钢,到如今的度合金材料,自攻螺钉的性能得到了极大的提升。同时,随着环保理念的深入人心,自攻螺钉的生产过程也在逐步实现绿色、环保、可持续发展。作为工业制造的重要一环,自攻螺钉的未来充满了无限的可能。随着智能制造、工业互联网等新兴技术的不断发展,自攻螺钉的生产和应用也将迎来更加广阔的空间。我们有理由相信,在不久的将来,自攻螺钉将会以更加先进的工艺和更加智能的应用方式,为工业制造带来更多的惊喜和突破。自攻螺钉,这个看似不起眼的工业部件,正以其独特的魅力和广泛的应用领域,成为了连接工业世界的坚实纽带。在未来的工业发展中,它将继续发挥着不可或缺的作用,为我们的生活带来更加美好的体验。浙江吉达金属有限公司螺钉值得用户放心。青海六角法兰面螺钉厂家直供
螺钉,就选浙江吉达金属有限公司,让您满意,有想法可以来我司咨询!青海六角法兰面螺钉厂家直供
赵纪生.自攻螺钉连接的蒙皮组合体抗剪性能的试验研究(下)[J].钢结构,1993,8(3):59-63.[5]张雪丽,张耀春.基于ANSYS的自攻螺钉波峰连接的抗剪性能有限元分析[J].建筑钢结构进展,2010,12(2):23-29.[6]李元齐,帅逸群,沈祖,等.冷弯薄壁型钢自攻螺钉连接抗拉性能试验研究[J].建筑结构学报,2015(12):143-152.[7]陶晓燕.剪力钉受剪疲劳试验研究[J].钢结构,2015,30(4):14-16.[8]GB50018—2002冷弯薄壁型钢结构技术规范[S].[9]蔺钊飞,刘玉擎.焊钉连接件拉剪相关关系模型试验[J].**公路学报,2015(1):80-86.[10]高义齐.火灾下不同拉剪组合对螺栓节点性能影响[D].北京:清华大学,(CollegeofCivilandTransportationEngineering,Hoh**University,Nanjing210098,China)Abstract:Inordertoinvestigatethecapacitiesofselftappingscrewsconnectionmodelundercombinedshearandtensionforces,thenumericalanalysisforshearresistance,***mumshearstrengthandtensionstrengthundercombinedloadingwasresultsindicatedthattheanalysisandresearchofthemodelwereingoodagreementwiththestandardandtheresultsfromliterature。 青海六角法兰面螺钉厂家直供