您好,欢迎访问

商机详情 -

电力应急目标检测技术

来源: 发布时间:2024年11月21日

给图像打上标签是很多行业如自动驾驶、AI周界安防、工业机器人等必须进行的工作。随着AI的不断发展,利用AI进行图像标注成为这个行业的不错选择,通过大量的AI开发,对AI进行深度学习训练,让AI更聪明,进而使得计算机能够更好地对图像进行理解和处理。慧视光电推出的SpeedDP深度学习算法开发平台,通过本地化服务器部署,提供安全的一站式AI数据标注服务。与类似工具不同的是,平台更加大众化,即便是AI零基础的使用者,也能够通过简单的学习进行从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发,同时可以根据实力需求进行功能定制选择。慧视光电开发的慧视AI图像处理板,采用了国产高性能CPU。电力应急目标检测技术

目标检测

Viztra-LE026在进行定制开发时,有效精简了设计,板卡结构为半径18.5mm的圆形,边缘有四处半径为1mm的圆形凹槽,板厚度为1.5mm,封装器件后的厚度为4mm,在这样的结构设计下,图像跟踪板重量为5g。此外,Viztra-LE026图像跟踪板采用了低功耗芯片RV1126,板卡正常工作时,整体功耗控制在6W以内,用在无人机领域可以减少无人机的整体功耗,增加续航。作为一家专业的图像跟踪板开发企业,成都慧视能够根据实际需求进行板卡的接口定制,例如CVBS、LVDS、MIPI、DVP输入,网络视频输出等。并且支持故障检测、固件升级、支持多种通信接口,USB,串口。除了机载吊舱领域,慧视Viztra-LE026图像跟踪板还可广泛应用于体积要求较高的场景,例如DYT、车载辅助边海防监控、森林防火、电站检测、智能周界等。电力应急目标检测技术RK3399PRO图像处理板是我司自主研发的目标跟踪板,该板卡采用国产高性能CPU,搭载自研目标检测及跟踪算法。

电力应急目标检测技术,目标检测

SpeedDP深度学习算法开发平台能够通过大量的AI训练后,进行一键式AI图像标注,即便是零基础的AI使用者,也能够轻松便捷的进行数据标注、模型训练、测试验证和RockChip嵌入式硬件平台模型部署等可视化AI开发功能。针对于适用行业以及场景的丰富,慧视能够提供丰富的算法参数设置接口,来满足多元化的市场需求。SpeedDP整个AI开发过程包含从需求分析、数据制作到模型训练、测试验证以及模型部署几个主要模块,不同的用户可针对自己的业务场景进行AI算法的定制化开发以及算法模型的快速迭代优化。

传统的吊舱只能如上述那样工作,而要打造更加智能化的边海防无人机巡逻,则可以在光电吊舱中植入高性能的图像处理板,通过目标识别、检测算法的赋能,就能够让无人机实现目标识别检测、目标锁定跟踪等功能。为了进行有效结合,成都慧视开发了多块高性能的具备图像处理能力的光电吊舱。例如慧视VIZ-100T三轴三光目标定位吊舱,集10倍光学变倍可见光相机、640×512高分辨率红外相机、测程1.2km半导体激光测距机于一体,在边海防巡逻时能够昼夜成像工作。三轴高稳定精度平台框架能够有效保障画面的清晰稳定,并对目标点位的定位。吊舱内置我司自主开发的高性能AI图像处理板Viztra-HE030,该板卡采用瑞芯微旗舰级芯片RK3588,能够在算法的作用下实现高空目标识别检测、锁定跟踪人、车、船等目标,再通过和地面巡逻人员协调统一,就能够打造边海防的智能化体系。AI算法赋能下的图像处理板能够进行智能目标识别。

电力应急目标检测技术,目标检测

无人机用于目标识别跟踪具有灵活便捷的优势,从高空俯瞰,视野也很广阔,但是如果飞行高度越高,就会造成视觉上地面目标变小的情况,这时候如果无人机所携带的摄像头像素不足,则容易跟丢目标。这个难点采用成都慧视光电的AI图像处理板可以有效解决。慧视AI目标跟踪基于我司开发的瑞芯微高性能AI图像处理板,搭配自研的目标识别、跟踪算法,将这一套整合植入吊舱中,就能够对特定目标进行锁定跟踪,即便是无人机飞行高度的变化,肉眼很难辨别目标时,也不会丢失跟踪目标。慧视RK3588板卡可以用于大型公共停车场。电力应急目标检测技术

RV1126图像处理板的目标识别能力突出。电力应急目标检测技术

SpeedDP开发平台采用标准的AI开发流程,即数据标注->模型开发->应用部署。旨在快速直观的验证所开发的不同算法在移动端部署时的实际效果。测试平台目前支持的主要任务功能包括图像分类、目标检测、多目标跟踪,主要的部署平台是RockChip嵌入式硬件平台包括rk3399pro、rk3588等。为了尽可能减小测试工具与实际移动端部署程序之间的差异同时简化测试工具的开发难度,在设计测试平台程序时采用了一些特殊方法。首先使用C和C++设计封装了不同子任务的可执行程序,并通过读取不同配置文件的方式实现不同的功能,然后使用python+streamlit+子程序设计了web服务程序,用户可通过浏览器访问特定网址来使用测试平台。电力应急目标检测技术