萃取过程分析,常用的工业萃取过程根据使用的设备通常分为逐级萃取过程和微分萃取过程。1.逐级萃取过程(平衡萃取)以多级混合澄清槽为萃取设备的连续萃取过程。特点是每一个萃取级构成一个平衡级,易实现过程分解、组合与控制。2.微分萃取过程以各种塔为萃取设备的连续萃取过程。特点是设备紧凑,操作简单,结构形式选择多;但易出现轴向返混,影响萃取效率。逐级计算法是逐级萃取过程的基本计算方法,特别是各萃取级平衡关系不同时,采用逐级计算法计算萃取过程所需理论级数和各级浓度分布是比较常用和比较稳妥的方法。在实际萃取过程中,经常会出现各级平衡关系发生变化的情况,如用酸性萃取剂萃取电解质溶液中的金属离子时,随着金属离子量的增加,被萃相中的H+浓度会随之增大,导致被萃相的酸度逐级增大,因而影响到被萃离子在两相中的分配比。萃取过程无化学变化,是一个物理过程。西安有机物萃取设备
萃取又称溶剂萃取或液液萃取(以区别于固液萃取即浸取),亦称抽提(通用于石油炼制工业),是一种用液态的萃取剂处理与之不互溶的双组分或多组分溶液,实现组分离的传质分离过程,是一种普遍应用的单元操作。利用相似相溶原理,萃取有两种方式:液_液萃取,用选定的溶剂分离液体混合物中某种组分,溶剂必须与被萃取的混合物液体不相溶,具有选择性的溶解能力,而且必须有好的热稳定性和化学稳定性,并有小的毒性和腐蚀性。如用苯分离煤焦油中的酚,用有机溶剂分离石油馏分中的烯烃;用CCI4萃取水中的Br2。西安有机物萃取设备反萃取(stripping)是用反萃取剂使被萃取物从负载有机相返回水相的过程。
超临界流体的溶剂强度取决于萃取的温度和压力。利用这种特性,只需改变萃取剂流体的压力和温度,就可以把样品中的不同组分按在流体中溶解度的大小,先后萃取出来,在低压下弱极性的物质先萃取,随着压力的增加,极性较大和大分子量的物质与基本性质,所以在程序升压下进行超临界萃取不同萃取组分,同时还可以起到分离的作用。温度的变化体现在影响萃取剂的密度与溶质的蒸汽压两个因素,在低温区(仍在临界温度以上),温度升高降低流体密度,而溶质蒸汽压增加不多,因此,萃取剂的溶解能力时的升温可以使溶质从流体萃取剂中析出,温度进一步升高到高温区时,虽然萃取剂的密度进一步降低,但溶质蒸汽压增加,挥发度提高,萃取率不但不会减少反而有增大的趋势。
萃取器具的正确用法:①咖啡颗粒与水的接触时间。萃取可说是在咖啡颗粒被水吸收时,将咖啡颗粒内的水溶性成分提取出来的过程。即使改变水的比例,仍会继续从咖啡颗粒中取出化学成分,而溶解的成分也会继续混合并产生变化。因此,控制萃取时间才能促成比较适当的萃取及更均匀的结果。②水温冷水无法像热水那样能迅速且完整地萃取咖啡风味。水温在92~96℃时,香气成分会更快且自由地释出,使其他水溶性成分能在合理的时间内,更有效地被萃取出来。因此,在循环冲煮的过程中,温度须保持不变。液 - 液萃取中非常重要的操作是急速地振动样品。
20世纪40年代后期,生产核燃料的需要促进了萃取的研究开发。现今萃取通用于石油炼制工业,并普遍应用于化学、冶金、食品和原子能等工业。如,萃取已应用于石油馏分的分离和精制,铀、钍、钚的提取和纯化,有色金属、稀有金属、贵重金属的提取和分离,抗细菌素、有机酸、生物碱的提取,以及废水处理等。方法,向待分离溶液(料液)中加入与之不相互溶解(至多是部分互溶)的萃取剂,形成共存的两个液相。利用原溶剂与萃取剂对各组分的溶解度(包括经化学反应后的溶解)的差别,使它们不等同地分配在两液相中,然后通过两液相的分离,实现组分间的分离。萃取是有机化学实验室中用来提纯和纯化化合物的方式之一。西安有机物萃取设备
在液 - 液萃取过程中,有机相、水相、乳化物和外力是乳化形成的主要因素。西安有机物萃取设备
苏联学者分别用300、600、800、1500kHz的超声波提取鳕鱼肝油,在2~5min内能使组织内油脂几乎全部提取出来,所含维生素未遭破坏,且油脂品质优于传统方法。超声场不仅可以强化常规流体对物质的浸取过程,而且还可以强化超临界状态下物质的萃取过程。陈钧等对超声波强化超临界CO2流体萃取过程进行了试验研究,从麦芽胚中提取麦胚油,超临界流体萃取附加超声场后,麦胚油的提取率提高10%左右,且未引起麦胚油的降解。超声波萃取在提取油脂方面的研究与应用十分活跃,已开展的试验和应用涉及到八角油、扁桃油、丁香油、紫苏油、月见草油等的提取。西安有机物萃取设备