固相萃取技术是一种基于色谱理论的样品前处理方法,它采用选择性吸附、选择性洗脱的方式对样品进行富集、分离及纯化。对比传统的液-液萃取,固相萃取具有选择性强、分离时间短、回收率高、不易乳化、有机溶剂用量少及易于自动化等优点,被普遍地应用在水质检测、制药、环境分析、食品分析等领域。固相萃取就是利用固体吸附剂吸附液体样品中的目标物,使目标物与样品的基体和干扰化合物分离,然后再用洗脱液洗脱或加热介吸附,达到分离和富集目标物的目的。固相萃取不需要大量互不相溶的溶剂,处理过程中不会产生乳化现象;因采用GX、高选择性的吸附剂(固定相),固相萃取能明显减少溶剂的用量;固相萃取的预处理过程简单,费用低。萃取使溶质物质从一种溶剂内转移到另外一种溶剂中的方法。西安工业萃取装置
萃取器具的设计也是依照不同萃取基本原理制成:①浸泡是指在容器中倒入咖啡粉并与热水充分混合后,先静置一段时间再进行萃取的方法。根据研磨度及水温的不同,会影响两者接触的程度。也会因咖啡粉的搅拌情况、咖啡粉分离的速度,而萃取出不同的成品。②煎煮是指将容器内的咖啡粉及水混合后进行煮沸的方法。温度升到约100℃后,会因高温而难以继续萃取,加上水开始沸腾,有可能会因此产生严重的乱流。③渗滤直接对装有研磨咖啡粉的容器进行加热,并利用蒸气压力使热水循环以萃取出咖啡。水受热后沸腾上升,经过装有咖啡粉的粉槽,再透过管子流出,并重复此循环。此时,研磨度、水温及循环速度等,皆会因为接触时间的不同而有所差异。西安工业萃取装置与传统的液 - 液萃取相比,它采用小体积有机溶剂。
经过反复多次萃取,将绝大部分的化合物提取出来。溶剂萃取工艺过程一般由萃取、洗涤和反萃取组成。一般将有机相提取水相中溶质的过程称为萃取,水相去除负载有机相中其他溶质或者包含物的过程称为洗涤,水相解析有机相中溶质的过程称为反萃取。分配定律是萃取方法理论的主要依据,物质对不同的溶剂有着不同的溶解度。同时,在两种互不相溶的溶剂中,加入某种可溶性的物质时,它能分别溶解于两种溶剂中,实验证明,在一定温度下,该化合物与此两种溶剂不发生分解、电解、缔合和溶剂化等作用时,此化合物在两液层中之比是一个定值。
固相萃取分离模式:目标分析物为非极性或弱极性化合物,填充剂用硅藻土、硅胶、氧化铝、硅酸镁等强极性吸附剂,其中硅胶使用普遍,为正相吸附。目标分析物为极性较强的物质,填充剂使用非极性烷烃类化学键合相,此为反相吸附,以硅胶为基质的C18、CS键合相具有孔径表面积,键合量易控制,机械强度高,价格便宜,适应广等特点。当样品中存在的杂质极性比目标分析物极性更强时一般都选用反相固相萃取,样品溶液通过萃取柱,杂质不被保留,直接通过柱子除去,只有分析物保留在柱子上,只要选择一种合适的洗脱溶剂,将分析物从柱子上洗下即可。当样品中的杂质极性比目标分析物极性弱时,也可以采用这种分离模式,不过要进行次序相反的分步洗脱,先洗下目标分析物再处理柱子。经过反复多次萃取,将绝大部分的化合物提取出来。
向待分离溶液(料液)中加入与之不相互溶解(至多是部分互溶)的萃取剂,形成共存的两个液相。利用原溶剂与萃取剂对各组分的溶解度(包括经化学反应后的溶解)的差别,使它们不等同地分配在两液相中,然后通过两液相的分离,实现组分间的分离。如碘的水溶液用四氯化碳萃取,几乎所有的碘都移到四氯化碳中,碘得以与大量的水分开。较基本的操作是单级萃取。它是使料液与萃取剂在混合过程中密切接触,让被萃组分通过相际界面进入萃取剂中,直到组分在两相间的分配基本达到平衡。静置沉降,分离成为两层液体,即由萃取剂转变成的萃取液和由料液转变成的萃余液。料液和各级萃余液都与新鲜的萃取剂接触,可达较高萃取率。西安工业萃取装置
但萃取剂用量大,萃取液平均浓度低。西安工业萃取装置
在进行萃取时不论所加物质的量是多少,都是如此。属于物理变化。用公式表示:CA/CB=K。CA.CB分别表示一种物质在两种互不相溶地溶剂中的量浓度。K是一个常数,称为“分配系数”。有机化合物在有机溶剂中一般比在水中溶解度大。用有机溶剂提取溶解于水的化合物是萃取的典型实例。在萃取时,若在水溶液中加入一定量的电解质(如氯化钠),利用“盐析效应”以降低有机物和萃取溶剂在水溶液中的溶解度,常可提高萃取效果。要把所需要的溶质从溶液中完全萃取出来,通常萃取一次是不够的,必须重复萃取数次。西安工业萃取装置