您好,欢迎访问

商机详情 -

合成超声微泡包裹药物

来源: 发布时间:2024年07月29日

**组织中的生物学改变对纳米微泡的效率起着至关重要的作用。正常组织微血管内皮间隙致密,内皮细胞结构完整,而实体瘤组织新生血管内皮孔在380 ~ 780 nm之间,内皮细胞结构完整性较差。因此,与正常组织相比,一定大小的分子或颗粒更倾向于在**组织中聚集。这种现象被称为EPR (enhanced permeability and retention)效应,被认为是完成**组织被动靶向***的机制。在临床前试验中,与传统化疗相比,基于EPR的药物或基因递送靶向系统在***功效方面取得了显着进展。在过去的几年里,各种基于EPR效应的纳米材料已经被应用,其中纳米级纳米气泡的大小可以根据**血管中孔隙的大小而改变。鉴于不同类型**的内皮细胞中存在不同的间隙大小,因此必须根据**的类别建立合适尺寸的纳米材料。同样,纳米颗粒到达血液循环系统时,生物屏障所产生的阻碍也需要高度重视。因此,考虑到这些挑战,为了更好地利用纳米材料递送中的EPR效应,设计了各种处理方法。基于EPR的纳米颗粒靶向策略主要致力于调整药物或载体的大小和/或利用配体连接涉及EPR效应的分子。脂质壳比其他类型的壳(如聚合物)更不稳定,但它们更容易形成并产生更有回声的微泡。合成超声微泡包裹药物

合成超声微泡包裹药物,超声微泡

超声已被证明可以增强溶栓,超声与微泡结合使用,在溶解血栓方面比单独使用造影剂或超声更成功。**近,Unger等人开发了一种针对活化血小板的超声造影剂MRX408。该试剂使用另一种结合方法,将精氨酸甘氨酸天冬氨酸(RGD)分子直接附着在造影剂的表面。RGD与活化血小板上存在的糖蛋白IIB/IIIA受体结合。MRX408已被证明可以提高血栓的可见性,并在体外和体内更好地表征血栓的范围。超声已被证明可以增强溶栓,无论是否添加微泡,通常与静脉绐药溶栓剂结合使用。超声频率为1-2 MHz时,已证明有效溶栓并将***相关出血降至比较低。靶向微泡或游离微泡可静脉注射或直接进入血栓。超声引导溶栓***背后的机制涉及到微泡本身的机械特性。在低频和高功率下,造影剂会膨胀和收缩,并有可能使血栓破裂。此外,t-PA等溶栓剂可以被纳入气泡中,并在气泡破裂时沉积到血栓中。合成超声微泡包裹药物纳米微泡的直径通常在150-500纳米之间,是药物分布的诱人场景并且与微泡相比已证明可以改善聚集和保留。

合成超声微泡包裹药物,超声微泡

将靶向成像方式与病变定向***相结合,可以确定与积极***反应可能性有关的几个生物学相关事实。特别令人感兴趣的问题是,目标是否存在,药物是否达到目标,以及预期目标是否真的是正在***的目标。有多种有趣的生物过程适合应用靶向超声成像来监测药物递送的疗效。我们的研究小组描述了一种对比增强超声技术,将破坏-补充超声与亚谐波相位反转成像相结合,以提高空间分辨率,并区分对比回波和非苏回波。在非破坏性成像脉冲期间,声音以指定频率从换能器传输,而接收函数则被检测到原频率的次谐波频率。次谐波振荡是由超声造影剂而不是周围组织***产生的,导致血管内造影剂产生大量的次谐波回声,而周围组织几乎没有信号。生成了血流速度和整体综合强度的定量参数图,并且与金标准技术相比,灌注测量更有利。该技术用于监测用抗血管生成药物***的实验性**的反应,并确定对***的不同反应水平。

几种类型的配体已被偶联到微泡上,包括抗抗体、多肽和维生素。单克隆抗体,特别是免疫球蛋白-v(IgG)家族的单克隆抗体,已***用于靶向细胞表面受体。单克隆抗体用途***,在纳摩尔到皮摩尔范围内具有结合亲和力。然而,当来源于小鼠时,它们往往具有免疫原性。用于靶向成像和药物递送的抗体生产也往往昂贵且耗时,并且结合活性因批次而异。抗体作为靶向药物的其他限制包括有限的保质期和温度敏感性。多肽是较小的分子,具有化学稳定性和低免疫原性。近年来组合肽库方法的发展迅速推进了多肽作为靶向配体的使用。一类尚未被用于靶向微泡的配体是适体。适配体是基于RNA或dna的配体,具有特殊的亲和力和特异性。这些配体是通过指数富集(SELEX)的配体系统进化过程产生的。因为这个过程是基于化学合成的,所以避免了抗体配体遇到的一些限制。心脏缺血区域的超声造影增强与对照组非缺血区域的信号有统计学差异。

合成超声微泡包裹药物,超声微泡

微泡的制造通常通过两种通用技术来进行:分散气体颗粒的自组装稳定,以及芯萃取的双乳液制备。第一种技术用于脂质或蛋白质基气泡。气体(溶解度低的空气或氟化气体)分散在含有脂质或表面活性剂胶束混合物或经超声变性的蛋白质的水介质中。这些成分沉积在气液界面上,使其稳定下来。有些微泡制剂在水相中保存数月仍能保持稳定。或者,微泡可以快速冷冻和冻干,以便在干燥状态下延长储存时间。水的加入导致微泡水分散体在使用前立即发生重组。聚合微泡是通过双乳液水-油-水技术制备的,该技术通过高剪切混合或超声在水相中产生有机溶剂微粒。有机“油”溶胶喷口含有溶解的可生物降解聚合物(如聚乳酸-共乙醇酸),以及内部水相的微滴或纳米滴。然后对颗粒进行冻干或喷雾干燥。有机溶剂和水被除去,留下一个内部有空隙的聚合物外壳。通常,加入挥发性化合物,如碳酸氢铵、碳氢化合物、氟碳化合物或樟脑,以帮助在颗粒中产生空心**。这类颗粒在干燥状态下储存时非常稳定。它们在水或生物介质中缓慢水解,形成乳酸和乙醇酸,具有完全的生物相容性。颗粒的壳厚和核大小可以通过聚合物、有机溶剂、内部水和成孔化合物的浓度和比例来控制。过程是利用MNB造影剂与超声联合产生空化效应,以破坏纤维蛋白网。合成超声微泡包裹药物

基于EPR的纳米颗粒靶向策略主要致力于调整药物或载体的大小和/或利用配体连接涉及EPR效应的分子。合成超声微泡包裹药物

载药超声微泡造影剂的设计之一是使药物由于细胞内pH值的变化或外部光或声音的刺激而释放。修饰超声微泡的一个很有前途的策略是使用电荷可切换的纳米颗粒,这种纳米颗粒可以经历表面电荷从负向正的变化,从而增加细胞的摄取。此外,还可以提出超声微泡的其他刺激响应设计。例如,活性氧(ROS)反应性超声微泡可以被开发用于产生触发药物释放的系统。这是通过将超声微泡与ROS响应材料结合来实现的,其中光或超声介导的ROS产生可以提高超声微泡释放药物的速度。此外,由于***病例中ROS水平升高,超声微泡也可以利用ROS响应荧光探针进行成像或实时监测,以检测富含ROS的病变。合成超声微泡包裹药物

标签: 超声微泡