您好,欢迎访问

商机详情 -

可靠SEM扫描电镜+CP钴酸锂晶界缺陷检测

来源: 发布时间:2024年02月02日

在锂离子电池加工工艺中,可以使用SEM扫描电镜对极片涂覆后频粒的均匀性,以及极片切割后边缘的平整性进行表征,避免因加工过程中的工艺不当而造成电池失效。

此外,在锂离子电池发生失效现象之后,还可以使用SEM扫描电镜对拆麻解后的失效电池进行表征,帮助定位具体的失效位置。通过观察具体失效位置的表面形貌和元素素分布,如正负极颗粒的晶粒特征和破损情况、析锂情况、过渡金属溶出情况、隔膜形貌等,对电池具体的失效原因进行分析总结,改善工艺流程,避免二次失效的出现。

我们的团队由一批具备丰富经验和专业背景的工程师组成,他们始终关注行业动态和技术发展趋势,确保我们的服务始终处于行业前沿。我们始终坚持严格的质量控制流程,确保每一个检测结果的准确性和可靠性。在服务过程中,我们将为您提供详细的检测报告和数据分析,助您更好地理解材料性能并指导产品优化。 SEM扫描电镜能够实时观察电池材料的表面形貌和结构特征。可靠SEM扫描电镜+CP钴酸锂晶界缺陷检测

可靠SEM扫描电镜+CP钴酸锂晶界缺陷检测,SEM扫描电镜

石墨结构稳定,在充放电循环中具有稳定的可逆容量,但是石墨负极材料的理论比容量只有372mah/g,难以满足快速发展的电子设备对锂电池越来越高的能量密度要求,因此发展具有更高比容量的新型负极材料是当前锂电池的研究热点。锂离子电池目前在人们的工作、生活中有着广泛的应用,如移动电话,数码相机和笔记本电脑等便携式电子产品以及电动汽车、大规模储能设备等方面占有重要地位。

影响锂离子电池性能的一个重要因素就是其电极材料,目前商业化锂离子电池的负极材料一般采用石墨。此外,随着微电子器件的小型化,迫切要求开发与此相匹配的锂离子电池,例如薄膜锂离子电池等。通过SEM扫描电镜技术,客户能够准确观察电池材料的微观结构和表面形貌,发现其中的缺陷和异物,并进行深入分析。这有助于他们及时优化产品设计和工艺流程,提高产品的质量和性能。

同时,我们还提供个性化的解决方案和专业性报告,为客户的决策提供有力支持。我们的检测团队主要成员全部来自美国密歇根大学,卡耐基梅隆大学,瑞典皇家工学院,浙江大学,上海交通大学,同济大学等海内外名校,为您对接测试的项目经理 100%硕士及以上学历。强专业能力,强针对性,高效率,助力企业产品高效研发。 可靠SEM扫描电镜+CP钴酸锂晶界缺陷检测我们在全国范围内设有31个分部,便于客户就近进行检测。

可靠SEM扫描电镜+CP钴酸锂晶界缺陷检测,SEM扫描电镜

近年来SEM扫描电子显微学分析技术已经成为表征电池材料的主要手段,扫描电子显微镜(SEM) 作为显微镜的重要分支,具有放大倍率宽、适用样品广、立体 成像效果好和综合分析能力强等优点,在表征形貌、辅助机理研究以及分析微区元素组成等方面有独特的优势,一定程度上弥补了上述显微镜的不足。

在电池研究中,原位SEM是一种非常有效的方法,使研究人员能够观察锂电池的运行情况,为电池循环中涉及的关键过程提供关键定量化的信息。例如,通过检查锂枝晶的生长和SEI层的形成-破裂等现象,原位SEM有助于提高我们对电池行为的理解。此外,该技术已被用于研究温度、湿度、电解液、运行时间和电极结构等变量对电池性能的影响,为开发新型电池材料和设计灵敏检测系统提供了重要信息。

电池是由电极、电解质与隔膜等材料组成,能将化学能转化成电能的装置。SEM是电池材料形貌表征便捷的表征手段之一,能清楚地反映和记录材料的三维形貌特征,粉末、块状、片状的电极材料均可用SEM进行直接观察,获得不同放大倍数的图像。总之,我们使用先进的仪器和设备对电池材料进行全方面的检测和分析并采取一系列措施来解决可能出现的问题,我们的专业知识和经验可以帮助您在电池研发过程中取得成功。

SEM背散射技术还能够提供样品的成分信息及分布情况。背散射电子携带有样品的成分信息,原子序数大的元素比原子序数轻的元素背散射电子信号更强,在背散射图像中体现为更亮的区域,所以图像的衬度差异能体现不同元素组分的分布情况,尤其适用于相对原子质量相差较大的金属合金样品。

庆熙大学Joa等为了减小锌电极在液体电解质环境下的副反应,将锌(Zn)和铋(Bi)掺杂并球磨,通过观察球磨产物背散射图像里的衬度差异,来证实Zn-Bi合金电极的成功制备(亮区为Bi,暗区为Zn)。扫描电镜工作环境对真空度要求较高,图像质量受电池材料本身性质制约( 如导电性、磁性、热敏性、易挥发等) ,缺乏观察材料内部结构的能力,这都在一定程度上限制了它的功能和应用。

聚焦离子束-扫描电子显微镜双束系统(FIB-SEM)可以实现材料微纳米尺度上的精细加工;扫描透射电子显微镜(STEM)既可以获知材料的表面信息又可以探测材料的内部结构;环境扫描电镜(ESEM)可以对不导电、含水的样品进行直接观察,保留样品的真实性。

我们拥有20个自营实验室,这些实验室配备了80余台大中型仪器设备,总价值超过2亿元。因此可以根据客户需求进行定制化服务,满足不同企业的特定需求~ 我们的检测服务团队通过SEM扫描电镜技术,可以帮助客户解决电池材料的质量问题。

可靠SEM扫描电镜+CP钴酸锂晶界缺陷检测,SEM扫描电镜

锂离子电池负极材料的颗粒性质对LIBs的初次效率、循环性能等有重重要影响,通常会使用SEM扫描电镜观察负极材料的颗粒尺寸、粒径、形貌等特征。目前负极材料主要包括碳负极材料、金属氧化物、合金材料和硅基材料。碳材料是目前常用的负极材料,包括石墨、软碳、硬碳和一些新型碳材料如碳纳米管、富勒烯。

在电池材料的检测方面,我们会使用一系列先进的仪器和设备。其中,X射线衍射仪和扫描电子显微镜是常用的设备之一。这些设备可以提供关于材料晶体结构、形貌、成分分布等详细信息。此外,我们还会使用能量色散光谱仪、光谱红外显微镜等设备来进一步分析材料的化学组成和结构特征。

我们拥有20个自营实验室和丰富的仪器设备资源,能够同时处理大量的测试和失效分析项目。我们的服务特色之一是全国SEM、AFM云现场,这是我们利用先进的仪器和技术提供的一种高效、便捷的远程服务。客户无需亲自到场,只需通过互联网连接,我们的专业技术老师就能为他们提供及时、准确的测试结果和失效分析报告。 通过SEM扫描电镜检测,可以观察电池材料中的微观形貌和尺寸分布情况。可靠SEM扫描电镜+CP钴酸锂晶界缺陷检测

通过SEM扫描电镜检测,我们可以准确测量电池材料中的孔隙率和孔径分布。可靠SEM扫描电镜+CP钴酸锂晶界缺陷检测

在锂电池产业链的上游及中游,原材料及产品质量控制工作需要借助仪器分析手段对正负极材料、电解液、隔膜等原材料进行检测分析,锂电池的产品性能及安全性能的方面的研发工作也需要对电池的各部分进行理化性能分析。

科学指南针接到客户要求对电池正极材料表面和截面结构进行深入的研究,以了解其对电池性能的影响。希望通过对元素分布和形貌的研究,找到提高电池性能的关键因素。

解决方案专业团队首先使用氩离子切割(CP)制样技术,将电池正极材料切割成适合观察的尺寸和形状。后使用扫描电子显微镜(SEM)深入观察到材料的形貌、颗粒尺度、包覆层以及元素掺杂情况。

后来为客户提供清晰、详细、准确的观察结果,帮助客户了解电池正极材料的表面结构对电池性能的影响,辅助客户顺利开展电池性能提升研发工作。


可靠SEM扫描电镜+CP钴酸锂晶界缺陷检测

科学指南针已覆盖全国主要省份,实现全国多层次的分部建设

已设立分部31个,用户覆盖34省市,企业客户累计服务5000+,高校累计服务1600+,每天处理样品9000+,平均结果时间,客户满意度超过99%

已建立20个大型测试分析实验室(材料检测实验室、成分分析实验室、生物实验室、环境检测实验室等);现有80余台大中型仪器设备,总价值超2亿元;每年持续投入5千万元以上购买设备。

各地实验室现分别拥有多种大型精密设备,如 TEM、FIB、XPS、核磁、AFM、SEM、EPR、稳态瞬态荧光光谱仪、紫外可见近红外分光光度计、ICPOES、BET、TG、DSC、激光共聚焦显微镜、台式同步辐射等,提供材料、环境、医全方分析测试服务。

团队主要成员全部来自美国密歇根大学,卡耐基梅隆大学,瑞典皇家工学院,浙江大学,上海交通大学,同济大学等海内外名校,为您对接测试的项目经理100%硕士及以上学历。效率高,专业能力强,针对性强。

客户的数据的安全性和完整性贯穿服务始终,赋予客户单独订单账户,专属数据交接系统,企业专属项目经理。