在效率价值方面,高效阅读、多模态体验、深度理解将成为个体阅读的**特征;在认知价值方面,个体化封闭阅读将向多元主体参与的互动阅读迈进,阅读不单是信息和知识的传递,还是知识的共享与共创;在生存价值方面,人机共生的超级阅读活动将持续推进人的自由***发展。阅读是一个复杂的信息加工过程,其不仅包括信息的获取和感知,还包含含义理解、推理判断等一系列交替进行的认知与理解活动。阅读效率提升是传统阅读研究、阅读教育的**议题,其主张通过阅读训练提高阅读速度和效率。机器也可以借助大语言模型和问题生成算法为阅读者智能生成阅读理解测 验题库,帮助阅读者进行阅读效能检测。电话科研学术助手案例
智慧读者与阅读理解能力。何为智慧读者?庞敬文等认为“互联网+”时代下的智慧阅读不仅是指阅读环境和设备上的智能化,更要产生智慧读者,将阅读过程由“知识化”转为“智慧化”,对阅读内容进行有效辨别、深度加工和智慧创造[6]。大学生智慧阅读素养包括智慧阅读意识、智慧阅读技能和阅读理解能力[7-9]。其中,阅读理解能力是关键能力,是智慧阅读意识和智慧阅读技能的**终服务目标。结合布鲁姆的认知目标分类,可以认为深度阅读理解能力即读者具备超越对阅读信息的记忆检索、解释和应用,逐渐过渡到对内容的批判性评价和自主性创造,自主生成高质量、个性化的认知成果的能力,这也是智慧阅读的**内涵。当前有关智慧阅读的研究多从工具效能视角出发,强调智能技术对阅读效率和体验的提升(如阅读工具便捷性、资源获取速度、界面友好度),对读者阅读理解能力的评估和干预不足,缺乏对阅读者认知策略的系统化支持,导致“技术赋能”与“认知发展”的割裂。电话科研学术助手案例,智慧图书馆实现自动化智 慧感知用户情境信息功能时,要加强用户信息安全和 隐私保护。
人类在智能时代将成为复合化的主体,其不仅是人机融合的新主体,也是多元人类主体连接的复合主体[26]。这一变化是智慧阅读迈向超级阅读的重要动因,**了更加高效、个性化、智能化以及具身体验性更强的人类未来阅读趋向。超级阅读作为智慧阅读的高级阶段,在一定程度将延伸、重塑阅读的价值和意义,亦可能带来技术异化风险。尤其是作为主体的人将更多的权利让渡以获得更加便利、自由的生活,但这一过程中人的主体性也在逐渐消解[27]。我们应当明晰,超级阅读的本质仍是人的自由生存和***发展。面102025年第1期总第475期特别策划VIEWONPUBLISHING对技术的快速发展和创新应用,我们在积极拥抱技术带来的高效、便捷、新体验的同时,还应当保持对技术理智且有选择性的态度,选择符合自身发展需求的生活和生存方式。
个性化阅读推荐系统在智慧图书馆推行,不仅提升了图书馆资源的运用效率,还大幅提升了用户的阅读体验感。基于AI,个性化阅读推荐系统能为各用户推荐感兴趣和符合需求的书籍或资料,激发智慧图书馆服务实现个性化转变,同时还能持续采集用户反馈进行不断优化,从而保证推荐结果既准确又高效。未来随着技术的持续发展,个性化阅读推荐系统会愈发智能化,进一步激发智慧图书馆在信息服务领域的创新活力,增强智慧图书馆的文化传播功效,满足各用户的多样诉求。用户可以获得高效的个性化阅读推广服务,将提升用户阅 读服务体验,实现图书馆智慧阅读推广服务高质量 发展。
在智慧图书馆中实施个性化阅读推荐系统,数据和隐私保护是不可缺少的环节,尤其是在处理用户的个人信息、阅读历史和搜索记录等敏感数据时。由于这些数据对于提供个性化服务和优化用户体验至关重要,因此图书馆必须采取严格的措施以确保其安全和保密性。首先,对于所有收集到的用户数据,应采取强大的加密技术,确保即使数据在传输过程中被拦截,信息也无法被未授权的第三方读取。同时,存储用户数据的数据库也需进行加密,为用户提供数据的双重保护。其次,访问控制是防止数据滥用的关键措施。根据信息资源与用户情景化需求相似性匹配结 果,通过多种渠道主动为用户推送满足其阅读需求的 信息资源。电话科研学术助手案例
做好馆员新型专业/服务能力体系 的重构和布局至关重要。电话科研学术助手案例
随后进行数据清洗,剔除无效、错误或无关数据,保证数据质量。例如,异常的用户行为记录、重复的条目或格式错误的数据都需要清理。清洗后的数据需要转换为适合分析的格式或结构,如分类数据编码、连续变量规范化等。这是确保数据被分析工具正确理解和处理的关键。在数据分析阶段,通过应用统计分析、机器学习算法等,从数据中挖掘用户的兴趣和行为模式。例如,通过分析用户的搜索和下载历史,预测其可能感兴趣的新书或主题,进而实现真正的个性化推荐。3.2内容资源管理与标签化个性化阅读推荐系统设计的关键为内容资源管理与标签化。智慧图书馆需把内容资源进行数字化管理,并给每本书籍、期刊、文章等都贴上标签,这些标签包括书籍的主题、作者、出版时间、阅读难易程度等,从而对资源进行有效的分类及标签化处理。当用户请求推荐时,个性化阅读推荐系统可迅速筛选出契合其需求的书籍或资源。同时,智慧图书馆还能按照读者的反馈以及借阅频率来调整资源标签,使推荐精细水平提升。电话科研学术助手案例