面向数智环境下图书馆数智服务的全要素精细感知、复杂资源有效融合、多服务高效协同等需求,结合IT规划参考模型,系统分析智慧图书馆的前沿研究与实践,充分融合智慧数据的演进范式及迭代模式,以数据治理体系为基础、数智技术体系为赋能智慧数据流通转化过程及图书馆数智服务流程,通过层次化、模块化、组件化的方式,分人机交互层、数智服务层、业务层、数据存储层、标准规范层、基础设施层构建融合智慧数据的图书馆数智服务平台。《智慧导读》是上海半坡网络技术有限公司研制开发的一种主动介入的实时文献内容知识发现服务产品。参考智慧导读数据分析
数据资源建设方面。学术平台底层资源的数据化程度决定平台的智慧化程度[45]。一方面,注重加强用户学术阅读行为数据的采集与挖掘,包括阅读内容偏好、阅读时长、阅读场景、阅读情绪、阅读心理、社交数据等,添加基本标签、偏好标签、会话标签、情景标签、互动标签构建用户实时动态画像模型。另一方面,侧重开发学术资源数据,包括细粒度内容资源、个性化阅读资源库、科研专题资料库、课程文献中心等,并做好与用户阅读行为数据的关联建设。例如,面向教育数字化转型的需求,山东大学图书馆构建学术数据服务平台,打造学者—机构—成果关联的数据资源[46]。以这些数据为基础,AIGC技术嵌入后将会实现多模态数据关系映射、转换及数据感知与挖掘分析。参考智慧导读数据分析引导书友去听书,这就是读书群每周领读一本书的意义。
智慧导读面向用户需求综合感知、内外部资源高效整合、情报业务数智赋能的需求,聚焦图书馆高度智能化服务,遵循服务泛在化、服务协同化等原则,分场景感知服务模块、资源整合服务模块、情报智能服务模块构建数智服务层。其中,场景感知服务模块通过智慧数据提供用户潜在需求挖掘、图书馆内外部环境识别、大数据关联分析及决策结果预测等能力,实现基本需求及深层需求的多维感知、服务过程的全域感知、服务结果的发展态势感知,由此提供图书馆各类业务场景下业务主体、业务环境、业务流程、业务规则、业务结果等全要素的识别、分析、预测服务。资源整合服务模块针对图书馆内纸质文献、电子图书等多模态资源,依托智慧数据动态管控业务运维关键要素状态,助力资源、技术、主体等要素间高效整合并充分发挥其协同效应,进而智能化实现包括识别建设、加工处理、调度分配、评价反馈、更新维护的全流程资源整合服务。情报智能服务模块融合智慧数据实现多源异构数据规范组织及有效优化,嵌入各类情报功能模型及数智技术应用模型提高服务质量并延伸服务边界,从而提供满足多主体的数据供给及协同创新需要的多元分层情报智能服务。
在高职院校智慧图书馆的建设中,强化馆员的技术能力和技术素养的培养是必不可少的。智慧图书馆依赖于人工智能、大数据、物联网等信息技术,因此馆员必须具备一定的技术能力,包括技术应用研究和创新能力,这对于图书馆的持续发展至关重要。提升智慧馆员的专业素养不应只关注设备的引进,还应重视馆员的技术能力和技术素养的培养,只有两者并重,才能真正推动智慧图书馆的发展。图书馆应在智能智慧社会中找到自己的定位,高职院校应督促图书馆馆员持续关注智慧科技的发展,跟上时代的步伐,不断提升专业素养。
知识链分析服务模式是试图在读者与文献数据库之间创新性地介入一个透明的文献服务网关。
生成式AI在生成内容的过程中,经常会遇到生成内容准确度不高的问题,包括以下场景:表达错误,错别字、病句较多,多有乱码符号;逻辑混乱,上下旬没有衔接,多为拼凑和重复内容;排版混乱,无段落,无标点,文章乱码;图文不相符,图片模糊不清,图片中有不良诱导或蹭流量的内容;音画低质,视频画面倾斜、倒置、镜像翻转,画面拉长变形,模糊不清;视频滤镜失真,边框占比大,水印严重遮挡画面等。因此,图书馆应配备专业人员对内容进行订正调整,同时探索关于AI生成内容质量评估的相关理论,为生成内容提供依据。智慧导读可以帮助读者更好地掌握阅读技巧。参考智慧导读数据分析
导读的意义是在末尾留一个悬念,给书友们一个好奇心。参考智慧导读数据分析
国内外大部分图书馆使用了初步的AI技术,主要是智能推荐,智能导航,机器人(问题和回答都是在事先设置好的范畴内),少数图书馆用虚拟现实技术来完成一些相关业务展示。但是对于阅读,尤其是AI沉浸式阅读领域,很少做过详细的体系框架和模型扩展研究。ChatGPT4.0的正式发布和利用AI衍生的一系列文本、图形、图像和视频处理产品的实践应用,是人工智能领域的转折性的突破,为图书馆打造更加丰富的阅读体验提供了可行性。因此,本文在构建AI沉浸阅读框架基础上,把现有的AI关键技术整合在一个模型之中,采取应用场景插件式模块化组合,可以根据环境和经费选择或添加场景插件,构建多模态沉浸式智慧阅读模型。
参考智慧导读数据分析