玻璃纤维增强PA的特性,加入玻璃纤维后,性能变化除了力学性能和耐热性能提高,流动性下降,还有成型收缩率变小。玻璃纤维增强尼龙的成型收缩率比纯尼龙小得多、而且玻璃纤维含量的增加,其成型收缩率变小的幅度很大,一般玻璃纤维含量为30%时,其收缩率为很小,约0.2%左右,玻璃纤维含量继续增加时,收缩率变化不大,玻璃纤维增强尼龙成型收缩率在流动方向和流动垂直方向是不一样的。这一特性表明玻璃纤维增强尼龙在制造薄型制品时可能产生一定程度的挠曲,因此,在制造薄型制品时,应选择增强填充尼龙作原料较为适宜。星易迪40%矿物填充增强尼龙6,增强PA6,增强尼龙6,PA6-M40。增韧塑料尼龙定制
PA6作为一种有机材料,其易燃性是一个明显的缺点。PA6燃烧速度快,火焰中放热率高。特别是在燃烧过程中会产生大量的燃烧液滴,这增加了火焰传播的风险。工业上使用的PA6有增强型和非增强型两种,都要求V0级。然而,由于玻璃纤维的烛芯效应,增强PA6,尤其是玻璃纤维增强PA6更容易燃烧,限制了其在电子电器、交通运输等领域的应用。开发综合性能优良的阻燃PA6对扩大工程塑料的应用范围,提高其附加值具有重要意义。因此,近年来,国内外许多科研机构和企业都投入了大量的人力物力来降低PA6的可燃性。增韧塑料尼龙定制产品可根据客户要求定制性能和颜色,我们致力于为客户提供多种改性的尼龙6/PA6塑料粒子产品。
透明PA:具有良好的拉伸强度、耐冲击强度、刚性、耐磨性、耐化学性、表面硬度等性能,透光率高,与光学玻璃相近,加工温度为300--315℃,成型加工时,需严格控制机筒温度,熔体温度太高会因降解而导致制品变色,温度太低会因塑化不良而影响制品的透明度。模具温度尽量取低些,模具温度高会因结晶而使制品的透明度降低。阻燃PA:大部分阻燃剂在高温下易分解,释放出酸性物质,对金属具有腐蚀作用,因此,塑化元件(螺杆、过胶头、过胶圈、过胶垫圈、法兰等)需镀硬鉻处理。工艺方面,尽量控制机筒温度不能过高,注射速度不能太快,以避免因胶料温度过高而分解引起制品变色和力学性能下降。
红磷作为阻燃剂在欧洲已被用作尼龙零件的阻燃剂。在400-500℃下,红磷在聚合物燃烧环境中还原为白磷,白磷在水中氧化为粘性含氧酸。这种酸在燃烧后覆盖在材料表面,起到保护和屏蔽作用,对聚合物有较强的脱水和碳化作用。它能在燃烧后的材料表面形成稳定的玻璃碳化层。碳层可以将外部氧气、热量和挥发性可燃物从内部聚合物基体中分离出来,有助于中断燃烧。红磷热解产物中的Po·自由基进入气相后,能捕获燃烧火焰中的H·Ho·自由基,从而减缓或阻断聚合物燃烧过程中的连锁反应,从而达到气相阻燃的目的。星易迪生产供应增强增韧阻燃PA6-G30,增强增韧阻燃尼龙6。
尽管尼龙具有良好的机械性能,但与金属相比硬度低且磨损率较高,不能满足工业的高速发展以及产品的高性能加工与应用需求。为了获得更好的机械和摩擦学性能,研究学者使用了各种填料,如氧化铝、石墨烯、二硫化钼等对尼龙进行改性,以获得高耐磨的尼龙材料。将γ-氨基丙基三乙氧基硅烷修饰的α-Al2O3纳米颗粒填充到尼龙中对其进行改性,对比纯尼龙,添加0.1%改性α-Al2O3的尼龙复合材料的抗拉强度和弯曲强度分别提高了19.5%和30.8%,摩擦系数和磨损质量分别降低了44%和64.8%,增强了材料的力学性能和耐磨性。将聚乙烯吡咯烷酮修饰后的纳米二硫化钼用于改性PA66材料,改性后提高了纳米二硫化钼的分散性,纳米材料的添加可以提高材料的拉伸、弯曲性能,加强了耐磨性。采用八氨基多面体低聚倍半硅氧烷功能化氧化石墨烯,并将其作为填料应用于尼龙6材料,制备了纳米复合材料,并对其性能进行研究,研究结果显示,利用POSS功能化GO可以有效地提高GO与尼龙6材料的界面结合力,提高摩擦性能。星易迪30%玻纤增强尼龙6,增强PA6,增强尼龙6,PA6-G30。增韧塑料尼龙定制
用30%玻璃纤维增强、弹性体改性,可注塑和挤出成型,具有强度高、韧性好、耐低温等性能特点。增韧塑料尼龙定制
增强尼龙是以尼龙树脂为基料,加入无机或有机纤维及相关助剂,经共混挤出造粒等工序制造的强度尼龙复合材料。采用纤维增强尼龙可成倍提高尼龙的强度,大幅提高其热变形温度,是制造强度耐热尼龙的有效途径。增强尼龙的生产方法有短纤法和长纤法,所谓短纤法是将切断的纤维混入尼龙树脂中,同时加入双螺杆挤出机中进行共混;长纤法是尼龙通过加料器进入双螺杆挤出机入口处,玻璃纤维从双螺杆熔融区导人,通过双螺杆的转动带入双螺杆与熔融的基料汇合,并进入螺杆的捏合区,经捏合块强剪切作用,将纤维剪成一定长度的短纤与基料混合均匀,而得到终产品。增韧塑料尼龙定制