您好,欢迎访问

商机详情 -

整圆阵列相控阵探头现货

来源: 发布时间:2022年05月29日

超声相控阵探头按阵列类别可分为线阵、面阵两种。线阵相控阵探头有单线阵和双线阵两种,线阵相控阵探头中的晶片按照直线方向一维排布,只能实现晶片排列方向上的波束偏转。双线阵相控阵探头可以得到更好的近场检测效果。面阵相控阵探头又有矩阵、环阵等类型。矩阵相控阵探头中的晶片按照两个方向排布,可实现两个方向上的波束偏转。环阵相控阵探头晶片呈同心圆环状排布,主要实现不同深度的聚焦功能。扇阵相控阵探头由环阵再切割而成,聚焦的同时可实现偏转。相控阵探头的频率越低,穿透力越强。整圆阵列相控阵探头现货

整圆阵列相控阵探头现货,相控阵探头

相控阵探头的应用技术:在实际超声NDT应用中,通常的做法是测量出衰减系数,而不是计算出衰减系数。在任何介质中,较高的频率都会比较低的频率衰减得更快,因此在检测具有高衰减系数的材料时,通常使用较低的检测频率,如对低密度的塑料和橡胶的检测。垂直界面的反射与透射:当在某种介质中传播的声波遇到介质不同且与声波传播方向垂直的材料时,声能的一部分会被直接反射回来,另一部分会继续向前传播。这种反射与透射的比率与两种材料各自的声阻抗相关,而声阻抗被定义为材料密度乘以声速。整圆阵列相控阵探头现货随着晶片宽度的减小,相控阵探头的声束电子偏转的性能会增强。

整圆阵列相控阵探头现货,相控阵探头

相控阵探头的应用技术:声衰减和声散射的数学理论较为复杂。声束经过特定声程时出现衰减而引起的波幅损失是材料吸收和声波散射共同作用的结果。吸收程度会随着频率的增加而呈线性增加,而散射情况则根据波长对晶粒边界大小的比率,或对其它散射体的比率,在通过3个区域时会发生变化。凹面阵相控阵探头:凹面阵多用于管道的外检测,因其能很好地匹配相同曲率管子的外径,并且其阵列的排列方式有物理聚焦的特点,声束比平面阵列更加容易汇聚。凸面阵能很好地匹配相同曲率管子的内径,但在阵列凸面排列的状态下,声场旁瓣十分明显,特别是小径管中的聚焦声场更容易向空间扩散;凸面阵多用于医学B超超声诊断领域。

常规超声探头和相控阵探头的优点:相控阵可以成功克服许多常规超声手动探伤的不一致性。相控阵探头是由一行或一组特定的小阵元组成的。通过刺激多个阵元,并向每个阵元施加特定的电压,可以产生预定的声束角度或不同角度的声束。此外,相控阵探头无需移动,通过设定的聚焦法则分时激励相控阵探头的阵元,可以使声束以类似于常规超声手动技术的移动方式向前/向后移动。当相控阵探头楔块置于特定位置在母材上沿焊缝移动,数据可以被收集和成像为C(平面)的焊接,就像一个传统的X光片。当然,超声成像系统还可以显示传统A扫,一个B扫(端面看),一个D扫描(侧视图),在不同的角度下s扫(扇形扫描)。水浸相控阵探头的设计目的是与水楔配合使用。

整圆阵列相控阵探头现货,相控阵探头

相控阵探头的声束形状:我们用以下这个比喻可以有效地说明这个概念。发自典型的未聚焦圆盘探头的声束经常被想象成一束源自开启晶片区域的能量柱,这个能量柱在直径方向上扩散,后消失。探头的声场被分为两个区域:近场和远场。近场是指接近探头的区域。在这个区域中声压反复几次达到大值、小值。这个区域的终端为轴上后一次出现大声压值的位置。这个位置到探头表面的距离表示为N,即近场距离。近场距离N证明探头的自然焦距。远场是近场距离(N值)以外的区域。在这个区域,随着声束直径的扩展及声能的消散,声压逐渐降低为零。近场距离是探头频率、晶片大小以及被测材料的声速互相作用的一个函数。相控阵探头的频率越高,那么分辨率和聚焦力度就越高。整圆阵列相控阵探头现货

线阵相控阵探头的优点是无需机械运动。整圆阵列相控阵探头现货

不同阵列排布方式的相控阵探头:相控阵按阵列形式通常可分为线形、矩阵形、环形和扇形。相控阵探头有多种不同的阵列排布形式,其类型按阵元排列方式可分为:一维线阵、二维矩阵、环形阵、扇形阵、凹面阵、凸面阵、双线型阵等。不同的阵列排布方式将会产生不同的声场特性,使相控阵能应用于不同工况下的检测。20世纪60年代,相控阵的研究主要局限于实验室;60年代末70年代初,医学物理学者将该技术用于医学人体超声成像中。2000年后,随着压电复合材料、纳秒级脉冲信号控制、数据处理分析、软件技术和计算机模拟等多种技术在超声相控阵成像领域中的综合应用,超声相控阵检测技术得以迅速发展,并逐步应用于工业无损检测领域。整圆阵列相控阵探头现货